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1. Introduction

Let a d-dimensional random feature vector X be observed and the problem s to classify it
to one of g classes (populations) ;,i=1,...,9.In practice one rather frequently meets
a situation where the number of classes g is much less than the dimension of X, ¢ < d.
Therefore it is natural to expect that X contains a lot of redundant information useless
for classification. In other words, it is supposed that there exists a mapping T": R¢ —
R*, T € T, such that k < d and T'(X) preserves all statistical information of the
observation X about the number of a population it is drawn from. Here 7 is some given
class of permissible mappings. Further we assume that k is the least dimension for which
such a mapping does exist.

For Gaussian mixture model and 7 consisting of all linear mappings, the mapping T’
can be identified with a projection (in the Mahalanobis metric) onto some linear subspace,
say H, of the dimensionality dim H = k. This linear subspace is called a discriminant
space (DS) (a formal definition is given in Definition 2). The assumption that 7 is the
class of all linear mappings is natural when covariance matrices of Gaussian mixture
components are equal but is not completely justified in a general case quadratic forms
being a reasonable alternative.

For mixtures of elliptical distributions, a natural generalization of Gaussian mixtures,
the class 7 must necessarily include nonlinear mappings otherwise T' is trivial (a proof
of this statement, almost obvious from intermediate arguments, is given in Section 3).
Nevertheless a reasonable definition of the DS can be given (RadaviZius (2001)).

In the paper a modification of the DS definition is proposed and extension of the DS
characterization result announced in (Radavi&ius (2001)) is obtained.

2. Discriminant space definition

Let Y; be a d-dimensional random vector representing the distribution of the feature vec-
tor X in the population 2, i = 1,...,g. Then one can write

X=Y,
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where v is a discrete random variable, inependent of Y;, ¢+ = 1,..., g, taking on values
1,...,q with respective probabilities p;, ¢ = 1,...,q. The probability p; is a priori
probability of drawing X from the population Q,i=1,...,q

Aposterior probabilities

m(z)=P{v=ilX =1z}, i=1,...,q
play a crutial role in classification. According to the Bayes theorem

pi fr.(z)
fx(z)’

where fx(x) and fy,(z) are distribution densities of the random vectors X and Y;, res-
pectively, i = 1,...,q. Since v given that X = z has the multinomial distribution with
probabilities 7y (z), . . . , Tq(Z), i€

mi(z) =

v | {X = 2} ~ Mult(1,m(2), ..., mq(2)),

the aposterior probabilities {mi(z), i = 1,..., q} contain all statistical information of
the observation X about the parameter i (or the random variable v in the Bayes’ setting),
the unobservable number of the population the observation X is drawn from. Let Thbea
fixed class of transformations of x € R

DEFINITION 1. A mapping T: R¢ — R¥, T € T, with the least dimension k such that
mi(z) = P{v =i|T(X) =T(z)} Vze€ R% i=1,...,q,

is called a minimal sufficient statistic for classification (discrimination) in the class T or
shortly minimal discriminant statistic.

In the sequel we assume that X has finite second momemts and is standardized, i.e.,
EX =04, cov (X,X) = I,

where 04 is a d-dimensional null-vector and I is a d x d unit matrix. Given a linear
subspace L C R, the orthogonal projection of z € R9 onto L is denoted by z ..

If T is the class of all linear transformations, then a minimal discriminant statistic
T € T can be identified with a projection onto some linear subspace, and we arrive to
the following definition.

DEFINITION 2 (Rudzkis and Radavitius (1997,1999)). A linear subspace H C R4 sa-
tisfying the condition

P{v=ilX =z} =P{v=ilXu=zn} VzeR’ i=1...q

and having the minimal dimension is called a discriminant space (DS) of X.
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This definition is quite natural for mixtures of Gaussian random vectors. In (Rudzkis
and Radaviius (1997,1999)) a complete characterization of the DS for Gaussian mixtures
is given.

Now suppose that X is a mixture of elliptical (but non-Gaussian) random vectors Y;,
i=1,...,q(see, forinstance, Aivazyan et al. (1989), Gupta and Varga (1993)). Then the
restriction of T to the class of linear mappings is too rigid since the only possible minimal
discriminant statistic in this case is a trivial one, T'(X) = X. A formal statement this fact
is presented in the next section.

DEFINITION 3 (cf. Radavitius (2001)). A linear subspace H C R is called a discrimi-
nant space for a random vector X being a non-trivial mixture of elliptical (non-Gaussian)
random vectors Y;, i = 1,...,q, iff

T(X) = (X5,1X — Xul)” N

is a minimal discriminant statistic for classification.

3. Characterization of DS

First we present several well-known facts about elliptical distributios (see, e.g., Gupta

and Varga (1993)).
Let Y; be a d-dimensional elliptical random vector with parameters M;,R;,and ¢. A
short notation of this statement is Y; ~ Eq(M;, R, ), i =1,...,q. Hence,

Eexp{itTY;} = exp{it" Mi} »(tTRit), teRY,
and
EY, = M;, cov(Yy,Y:)=-20'(0)R;, i=1,...,q.

If Y ~ E4(M, R, ) is absolute continuous, then distribution density fy (y) of Y takes
the following form:

fy(y) = det (R)™/2h((y - M)"R™(y - M)), 2)
where the function h: [0, 00) — [0, ) is uniquely determined by ¢ and d.
REMARK 1. Without loss of generality in the sequel it is supposed that ¥/(0) = —1/2.
Indeed, this can be always achieved simply by rescaling the function 1 and the matrices
R;,i=1,...,q(see, e.g., Gupta and Varga (1993), Theorem 2.1.4). Then we have
Ri=COV(Y;',Y{), i=1,...,q

It is said that the DS H is trivial if either H = {Ogq} or H = Re.
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Theorem 1. Assume that X is a mixture of absolute continuous elliptical random vectors
KNEJ(Mi’R‘i71/))’ i=1,...,q

with continuous distribution densities. If the DS H of X in the sense of Definition 2 is
non-trivial, then X is a Gaussian mixture.

Outline of the proof. Since H is non-trivial we have 1 < k < d and ¢ > 1. Definition 2
and the factorization theorem yield

fr.(y) = A(y) B(ynli) VyeR?, A3)

where A:R? — [0, 00) and B(:|i): H — [0, 00) are some measurable functions, i =
1,...,q. From (3) and (2) we have

h((z — Mi)TR;(z — My)) = A(z) Bi(zn) Vz € RY, (0))

for some measurable function B;, i = 1,...,q. It is not difficult to make sure that this
implies the positivity of the function h.

Sety = y(t) = M; +tz,z € HL, t € R, where H' denotes the orthogonal
complement of H in the space R?, and Aij=M; —M;,i,j=1,...,q. Then, from (4)
it follows that

hi(8) & h((tZ + Aij) TR (2 + Ayj)) = iy h(£2 2T R '3), )

for some positive constants c;; and for all £ € H.. This implies that h; is symmetric
with respect to the two different centers and hence periodic unless

ZTR7'A; =0 Vi,j=1,...,q. (6)

The periodicity of h; contradicts to integrability of h with respect to the Lebesque me-
asure. Thus, (6) holds. Since the random vector X is centered, we get

#TR;'M; =0 VZeHY,i,j=1,...,q. @)

Let o Lef :i'TR,jl:E, k =1,...,q. Now suppose that a; # a; for some i and j. Without
loss of generality one can assume that a; > a;j. If ¢;; = 1, (5) shows that h is non-
integrable. On the other hand, if c;; # 1, h either is not continuous or is not positive.
Thus, :

#TR'z=3z"R;'z VieH', i=2,...,q ®

Further, fix some z = zy + %, Z € H*, and set y = y(t) = zy + t %, t € R. From (4)
we obtain that :

ho(t) € h(aat? + Bit +v;) = cijh(nt? + it +%), VteR, 9)
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where c;;, 7;, 7 are certain functions of zy and Sk def .’ETREIIL‘ H, k=1,...,q. Again,
(9) imlies B; = [; otherwise hy being periodic and hence non-integrable. Since z =
Ty + % is arbitrary and X is standardized we conclude that

yTR'y=1, zTR;'y=0

forallz € H,y € HL, k =1,...,q.From the last equalities, (4), (8), and (7), it follows
that

h(w + q1(2)) h(g2(2)) = h(w + g2(2)) h(1(2)) Vw >0,2€R, (10)

where ¢; and g are two different nonegative second order polynomials such that there
exists real solutions of the equations q1(2) = 0 and ¢;(z) = g¢2(2). From (10) it is
not difficult to derive that h is the exponential function with the negative exponent, i.c.,
fr.(y), i =1,...,q, are Gaussian distribution densities.

Theorem 2 (cf. Radavi&ius (2001)). Assume that X is a mixture of absolute continuous
random vectors Y; ~ Eq(M;, Ri,¥), i =1,...,q. Let

def {u eR% vTM; =0, o;Riu=u forsome a; >0,Vi=1,.. .,q}J'.
Then the discriminant space H is a subset of Ho,
H C Ho. 11

If the function h(t) defined in (2) is strictly monotonically decreasing for some to > 0
and allt > to, then H = H,.

REMARK 2. Scale mixtures of Gaussian distributions are typical examples of elliptical
distributions with the strictly monotonically decreasing function h.

Outline of the proof. From the definition of Hy it follows that distribution density of Y; is
of the form

Fr.(y) = det(R:) ™2 h(asly — yno |* + Q(y, i) (12)

where Q(yHo|i) is a quadratic form of y,,% = 1,.. ., g. Consequently, To(X) = (| X —
Xo!|, XF,)T is a sufficient statistic for estimating i. Hence, the minimal discriminant
statistic T'(X) is a measurable function of To(X). Relation (11) follows herefrom.

On the other hand, the factorization theorem yields

fr.(v) = A(y) B(T(@)li) VyeRY, (13)

where A and B(-|i) are some measurable functions, i = 1,...,q. Since h(t) in (2) is
supposed to be strictly monotonically decreasing for ¢ 2> to, (1), (2), and (13) imply (12)
with H instead of Hp. This fact is proved by the similar arguments as in Theorem 1.
Thus, H = Hp.
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sWe o

Diskriminantiné erdvé eliptiniy skirstiniy miSiniy klasifikavimo
uzdavinyje
M. Radavicius

Darbe pasiilytas diskriminantinés erdves apibréZimas eliptiniy skirstiniy miSiniy klasifikavimo
modelyje ir pateikta jos charakterizacija per modelio parametrus.



