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1. Introduction

Let {Z(s) : s € D C R?} be a p-variate Gaussian random field having different means
and factorised covariance matrices in populations £2; and ;. Assume that the model of
Z(s) in population §; is

Z(s) = B z(s) +&(s),

where z(s) = (z1(s),. ., zq(s))T is a ¢ x 1 vector of nonrandom regressors and B; is
unknown parameter matrix of order ¢ X p, | = 1,2. Assume, that {&;(s) : s € D C R?}
is a zero-mean stationary random Gaussian field with spatial covariance defined by a
parametric model cov {&(t),&i(s)} = o(t — s;6;) forall t,s € D, where 6, € O isa
m x 1 parameter vector, © being an open subset of R™, | = 1, 2. We restrict our attention
to the homoscedastic models, i.e., o(0;8) = X for each 8 € ©.

Then, in €, the mean function at location s is ui(s) = Bf z(s) and the spatial co-
variance function is cov {&(t), €i(s)} = Zp(t — s;61), where p(t — s; 6;) is the spatial
correlation function, ! = 1, 2. It is assumed that the function p(t—s; ;) is positive definite
(Mardia and Marshall [5]).

Suppose for t, s € D, that

cov {&1(t),2(5)} = 0. | M

Consider the problem of classification of an observation Z(r), withr € Do C D,
into one of two populations specified above.
Then the probability density function (p.d.f.) of Z(r) in  is

P(alr)i (), B) = g {3 et)-BF2(0) "2 atr)- B 2(e) |

Under the assumption that the populations are completely specified and for known
prior probabilities of populations 71 (1), w2(r) (m1(r) + m2(r) = 1), the Bayes classifica-
tion rule (BCR) dp(-) minimizing the probability of misclassification (PMC) is equiva-
lent to assigning Z(r) = z(r) to  if

m(r)p(z(r)) = Eggﬂk(r)m (2(r)),
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l = 1,2. Then BCR dp(2(r)) is defined as
dp (+(r)) = sxg max m(r)pi (). @

Denote by Pp the PMC of BCR. Usually Pg is called Bayes error rate (see, e.g.,
Hand (1997)).

In practical applications the parameters of p.d.f. are usually unknown and must be
estimated from training samples T and T taken separately from €2; and §25, respectively.

The performance of the plug-in version of the BCR when parameters are estimated
from training samples with independent observations are widely investigated (see, e.g.,
Okamoto (1963)). However, it has been founded that the assumption of independence
is frequently violated. Lawoko and McLachlan (1985) investigated the performance of
sample linear discriminant function (LDF) when training samples follow a stationary au-
toregressive process. In this paper, we shall consider the performance of the plug-in LDF
when the parameters are estimated from training samples being a realisations of Gaus-
sian random field. Here the maximum likelihood (ML) estimators of unknown means
assuming covariance matrices to be known are considered.

Suppose in a region D; C D, D; N Dy = @, we observe the training sample T’ =
{1}, T2} with T} = {Zy,...,ZiN,}, where Zio = Z(sl,) denotes the ath observation
from Q,l =1,2,a = 1,..., N;. Assume, that all points in Dy are beyond the range of
spatial correlation function (Cressie, 1993, ch.2) defined for points in D;. Then Z(r) is
independenton T'.

Let B; and B, be the ML estimators of B; and B, respectively, based on T', and let
fiu(r) = BT z(r). The plug-in rule dg (2(r), B1(r), A2(r)) is obtained by replacing the
parameters in (2) with their estimators, i.e.,

dB(z(r), B1(r), fiz(r)) = arg (max mi(r)p (2(r); fa(r)). 3)

Then the corresponding discriminant function L(r), also known simply as the sample
LDF (see, McLachlan (1974)), is defined as

1 T
L) = (#tr) = 5@00) + 7o) ) 27 Balr) = Ba) +4(0),

wIT

where ¥(r) =1In 7.

DEFINITION 1. The actual error rate of dg (z(r); i1 (r), B2(r)) is defined as
PT(@a(r), Ba(r))

4 i:m(r) / (1 - 6(l,dB(Z(T); ﬁl(r),ﬁz(r)))pz (2(r); mu(r), E)) dz(r).
=1
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In our case the actual error rate for dp (z(r); i1 (r), 2(r)) is then given by

Pr(fiy(r), ia(r))

=im(r)<1>((-—1)‘(m (r)
1=1

() +R0) B @) - Ral) + g(r))
V@) - ) T2 (@) - ()
where ®(-) is the standard normal distribution function.

DEFINITION 2. The expectation of the actual error rate with respect to the distribution
of T denoted as ET{P' (Ba(r), B2 (r))} is called the expected error rate (ER) for the

dp (z(r); B (r), fz(r))-

The goal of this paper is to find asymptotic expansions of ER for the plug-in LDF. The
case of independent normally distributed observations in training sample from one of two
classes with equal feature covariance matrices, was considered in [3]. Du€inskas [7] has
been made the generalization for the case of arbitrary number of classes (I > 2) and
regular class-conditional densities. McLachlan [10] presented ER for the case of equi-
correlated Gaussian observations. Mardia [9] considered similar problem of classifying
spatially distributed Gaussian observations with constant means, but he did not analyse
ER or probabilities of misclassification.

In this paper we obtain the asymptotic expansion up to the order O(N —1), where
N = Nj + N, for the ER of classifying spatially distributed Gaussian observation with
different means and spatially factorised covariance matrices. Terms of higher order are
omitted from the asymptotic expansion since the contribution of higher order terms is
generally negligible [10]. ML estimators of means are used in plug-in version of Ba-
yes classification rule. We also make a comparison for the accuracy of our asymptotic
approximation with Monte Carlo simulations when training sample sizes are small.

2. Main results

The expectation vector and the covariance matrix of the vectorised training sample Ti
defined by T)V = (ZT, ..., Z[y,)T are

T
= (l"lr(sl)v (RN “T(SM)) )
and
o= CiI®L,

where C; is the spatial correlation matrix of order N; x N;, whose (c, B)th element is
pi(sa — $8), @, 8 =1,...,Ni, 1 = 1,2. Suppose, that T; is known, [ = 1, 2. Without
loss of generality, we assume, that ¥ = I, where I is the unity matrix.
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Let X; be an N, x q regressor matrix with i-th column (z1, . . ., zn,;)T, where z4; =
zi(sk),i=1,...,¢,k =1,...,Ni, 1 = 1,2. Denote by T} the matrix of order N; x p,
whose j’th column is (Z1;(s1), . . -, le(sN,))T.

Lemma (Kai-Tai and Yao-Ting, 1997). For ! = 1,2 ML of B, and B; based on T are
= (X,TC,'IXI)'IX,TCI‘IT,‘, l=1,2.

Let Ay, (C}) be the largest eigenvalue of C, I =1, 2.
Assumption 1. Assume, that =7 (r)(X] Xi)z(r) = O(g;),as Ni = 00,1 = 1,2.
Assumption 2. Suppose, that Ay, (C)) < v, v; < 00,38 Nj — 00,1l =1, 2.
Assumption 3. Assume, that %1 —v,aaN;,Ny -5 00,0<v<00,l=1,2.

Put Afiy(r) = fiu(r) — u(r) = (B B - Bz)Tz(r). Let (-) denote the standard normal
pd.f.
Define

a(r) = :rT(r)(X,TC','le)"l:c(r), 1))

and A%(r) = zT(r)(B; — B2)Z~!(B; — B2)Tz(r) (square of the Mahalanobis distance)
foranyr € Dandl=1,2.

For sxmg:hcity we omit the superscript 7 on P"(-).

Let P be the first-order derivatives of P (71 (r), iz(r)) with respect to fi;(r) eva-
luated at y;(r), and P,f:‘? denotes the second-order derivatives of P(fi1(r), B2(r)) with
respect to jz;(r) and fix (r) evaluated at 44;(r) and pi(7), respectively, (I, k = 1,2).

Theorem. Suppose Assumptions 1-3 hold for training samples T, T5. Then the asymp-
totic expansion of the expected error rate for the dp (z(r), fir (), fiz(r)) is

. 2
ET{P(ﬁl(r),ﬁz(r))}=l§,,,(,.)d,( Al) |yt Z((r)) )

{203 Fo( -2 o

Proof. Since P(fiy(r), B2(r)) is invariant under linear transformations of data we use
the convenient canonical form of p (r) = ((— 1)"‘“55Z 0 0) k = 1,2. Expand
P(f1(r), fiz(r)) in Taylor series about the point fiy(r) = 0) L Ha(r) =
(- ﬁﬂ ,0,...,0)T. Taking the expectation with respect to the dlsmbutlon of T and
dropping the third order terms we have

2
ET(P(ﬁl(r)’ Aa(r) )) = Pa+ Y (P Er{Amu(r)}

=1
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2
+5 5 tr (ET{Aﬁk(r)P,fi)Aﬁ,(r)}). " 5)

lLk=1

[ SR

Since P (fix (r), 2(r)) is minimized at uf (1) = ((-1)"*! %ﬂ, 0,...,0), then
PM =0, =12, (6)

where 0y, is p-dimensional vector of zeroes.
Using Lemma and (4) we get, that

Er{Am(r)AR] (N} = a(), 1=1,2, ™

where I, is p X p unity matrix.
From (1) it follows, that
Er{Afi(r)ARZ (r)} = Opxp, ®
where 0pxp is p X p matrix of zeroes.
Note that
—AM 4 o_qyr
PO _ ™ (r)w( ) A(r)) (-4 +-1) :g(,);) o, ©
AP\ AR T 2 0,1 L)

here 0,_ is a (p — 1)-dimensional vector of zeroes and I,_; is (p — 1) x (p — 1) unity
matrix.
Using Assumptions 1, 2 and inequality
2T (r)(XT O X)) a(r) < AmaT (r)(XT Xi) " 2(r),

we can conclude that
ai(r) =O(i), as Ny—oo,l=1,2
N,

Omitted terms of expression (5) are of order a¥(r) and a%(r), k > 2, and so under
Assumption 3 they are of order O(N ~2).
Then putting (6)—(9) into (5) we complete the proof of the stated theorem.

The asymptotic ER, AER, defined by

é A(r) 17(r)
AER =) m(r)® +(-1)
2 (-2 +v3H)

+;£(&)) ( Aé’")—g((’)))gm(r)(( 20 (- l)ll((:)))2+p-—1),
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can be used for the performance evaluation and comparison of the considered LDF. The
minimum of the AE'R for fixed training sample sizes can be considered as criterion for a
optimality of spatial sampling design.

3. Example

Here we make the comparison of AER with ER estimated from Monte Carlo simula-
tions (denoted by Ppsc) for one special case. In the example we assume D to be the
integer regular 2-dimensional lattice and use the second-order neighbourhood scheme for
training samples. There are four spatially symmetric observations in training sample for
each class: empty circles for T and filled once - for T3 (Fig. 1).

Haining (1990) suggested represent mean as a polynomial function of coordinates of
a specified order. This is so-called trend surface model. The trend surface model could
be considered as a special case of polynomial regression model. Here we use the first-
order trend surface model, which corresponds to the case, when regressors are simply the
coordinates of considered locations (g = 2).

Suppose 2-dimensional observation is taken in the each of considered locations. Let

0.1 0.4 0.1 04456
B, = and B, = ’
03 0.2 0.3 0246
i.e., the classes differ in the parameter values for the second component of the observa-

tion.
Assume the spherical correlation function

3u+1 0 < |h| < &,
C(|h|,f€l)={ 2 K L_L. | I 1

0, hl > Ky,

s

Fig. 1. Training sample design (locations of observations in T and T,
and the location of observation to be classified)



484 J. Saltyté, K. Duéinskas

Table 1
Comparison of approximation with simulation (7; = 0.3)

A(r) AER Pyc AER/Pyc

1,0 0523  0.261 2.002
14 0.296 0.234 1.267
1,8 0.203  0.187 1.086
22 0.145  0.167 0.872
26 0104 0.126 0.822

30 0073 0.112 0.650

with range x;, [ = 1, 2. It is easy to see from the Fig. 1, that k; = V6 and kg = /7 are
appropriate ranges for two training samples.

In Table 1 the values of AER and values obtained by Monte Carlo simulation taking
100 replications at each location are presented. Column with ratio AER/ Pysc allow us
to estimate the accuracy of the proposed expansion. We can conclude that this expansion
is sometimes appropriate even for small training sample sizes.
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Diskriminantiné daugiamaciy erdviniy regresiju analizé
K.Dutinskas, J. Saltyté

Straipsnyje nagrinéjamas daugiama&iy Gauso stebéjimy, pasiskirs¢iusiy erdvéje, klasifikavimo
uZdavinys. Gautas pirmos eilés asimptotinis tikétinos klasifikavimo klaidos skleidinys atvejui, kai
i Bajeso klasifikavimo taisykle istatome maksimalaus tikétinumo vidurkiy ivertius pagal erdvéje

koreliuotas mokymo imtis. Atliktas skaitinis asimptotinés klasifikavimo klaidos palyginimas su
klaida, sumodeliuota Monte Karlo metodu.



