On H(D)-valued random elements

Antanas LAURINČIKAS (VU, ŠU) e-mail: antanas.laurincikas@maf.vu.lt

For any simply connected region D on the complex plane \mathbb{C} , by H(D) denote the space of analytic on D functions equipped with the topology of uniform convergence on compacta. Investigations of the universality of zeta-functions use some properties of H(D)-valued random elements. In this paper we consider the support of the series of such random elements.

Let G_1, \ldots, G_n be simply connected regions on \mathbb{C} , and $H(G_1, \ldots, G_n) = H(G_1) \times \ldots \times H(G_n)$. Let $\{K_{jm}\}$ be a sequence of compact subsets of G_j such that

$$G_j = \bigcup_{m=1}^{\infty} K_{jm},$$

 $K_{jm} \subset K_{j,m+1}$, and if K_j is a compact and $K_j \subset G_j$, then $K_j \subseteq K_{jm}$ for some m, $j = 1, \ldots, n$. The existence of the sequence $\{K_{jm}\}$ is given in [1]. For $f_j, g_j \in H(G_j)$ we put

$$\varrho(f_j, g_j) = \sum_{m=1}^{\infty} 2^{-m} \frac{\varrho_{jm}(f_j, g_j)}{1 + \varrho_{jm}(f_j, g_j)},$$

where

$$\varrho_{jm}(f_j,g_j) = \sup_{s \in K_{jm}} |f_j(s) - g_j(s)|, \quad j = 1,\ldots,n.$$

Then ϱ_j is a metric on $H(G_j)$ which induces its topology, $j=1,\ldots,n$. For $\underline{f}=(f_1,\ldots,f_n), \underline{g}=(g_1,\ldots,g_n)\in H(G_1,\ldots,G_n)$ we take

$$\varrho(\underline{f},\underline{g}) = \max_{1 \leq j \leq n} \varrho_j(f_j,g_j).$$

Then we have that ϱ is a metric on $H(G_1, \ldots, G_n)$ which induces its topology.

Let S be a separable metric space, and let B(S) stand for the class of Borel sets of S. We recall that a minimal closed set $S_P \subseteq S$ such that $P(S_P) = 1$ is called the support of a probability measure P on $(S, \mathcal{B}(S))$. Note that S_P consists of all $x \in S$ such that for every neighbourhood G of x the inequality P(G) > 0 is satisfied.

Let X be a S-valued random element defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the support of the distribution $\mathbb{P}(X \in A)$, $A \in \mathcal{B}(S)$, is called the support of the random element X. We will denote the support of X by S_X .

Theorem. Let $\{X_m\}$ be a sequence of independent $H(G_1, \ldots, G_n)$ -valued random elements such that the series

$$\sum_{m=1}^{\infty} X_m$$

converges almost surely. Then the support of the sum of the latter series is the closure of the set of all $f \in H(G_1, ..., G_n)$ which may be written as a convergent series

$$\underline{f} = \sum_{m=1}^{\infty} \underline{f}_m, \quad \underline{f}_m \in S_{X_m}.$$

We divide the proof of the theorem into three lemmas.

Lemma 1. Let X and Y be two independent $H(G_1, \ldots, G_n)$ -valued random elements with distributions P and Q, respectively. Then the distribution of the sum X + Y is the convolution P * Q of P and Q.

Proof. Suppose that X and Y are defined on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $A \in \mathcal{B}(H(G_1, \ldots, G_n))$. From the independence of X and Y we have that the distribution $\mathbb{P}(X + Y \in A)$ of X + Y is equal to the product

$$(P \times Q)((\underline{x}\underline{y}): \underline{x} + \underline{y} \in A), \quad \underline{x}, \underline{y} \in H(G_1, \ldots, G_n).$$

However, denoting by I_A the indicator function of the set A, by the Fubini theorem we find

$$(P \times Q) ((\underline{x}\underline{y}): \underline{x} + \underline{y} \in A) = \int_{H(G_1, \dots, G_n) \times H(G_1, \dots, G_n)} I_A(\underline{x} + \underline{y}) d(P \times Q)$$

$$\int_{H(G_1, \dots, G_n)} \left(\int_{H(G_1, \dots, G_n)} I_A(\underline{x} + \underline{y}) (P(d\underline{x})) Q(d\underline{y}) \right)$$

$$\int_{H(G_1, \dots, G_n)} P(A - \underline{y}) Q(d\underline{y}) = (P * Q)(A).$$

Lemma 2. Let X and Y be two independent $H(G_1, \ldots, G_n)$ -valued random elements. Then the support S_{X+Y} of the sum X+Y is the closure of the set

$$S = \{ f \in H(G_1, \dots, G_n) : f = \underline{x} + y \quad \text{with} \quad \underline{x} \in S_X, y \in S_Y \}.$$

Proof. Let $\underline{x} \in S_X$, $\underline{y} \in S_Y$, and $\underline{f} = \underline{x} + \underline{y}$. We take an arbitrary positive number δ and put

$$A = \{\underline{g} \in H(G_1, \ldots, G_n) : \varrho(\underline{f}, \underline{g}) < \delta\}.$$

Moreover, let P and Q be the distributions of random elements X and Y, respectively. Then we have

$$\begin{split} (P*Q)(A) &= \int\limits_{H(G_1,\ldots,G_n)} P(A-\underline{g})Q(\operatorname{d}\underline{g}) > \int\limits_{\{\underline{g}:\,\varrho(\underline{y},\underline{g})<\delta/2\}} P(A-\underline{g})Q(\operatorname{d}\underline{g}) \\ &\geqslant P\left(\left\{\underline{g}:\,\varrho(\underline{x},\underline{g})<\frac{\delta}{2}\right\}\right)\int\limits_{\{\underline{g}:\,\varrho(\underline{x},\underline{g})<\delta/2\}} Q(\operatorname{d}\underline{g}) \\ &= P\left(\left\{\underline{g}:\,\varrho(\underline{x},\underline{g})<\frac{\delta}{2}\right\}\right)Q\left(\left\{\underline{g}:\,\varrho(\underline{x},\underline{g})<\frac{\delta}{2}\right\}\right) > 0, \end{split}$$

since by the definition of the support each multiplier is positive. This and Lemma 1 show that $S \subseteq S_{X+Y}$. But the set S_{X+Y} is closed, hence $\bar{S} \subseteq S_{X+Y}$.

It remains to show that $\bar{S}\supseteq S_{X+Y}$. Suppose that there exists a point \underline{f} such that $\underline{f}\in S_{X+Y}$ but $\underline{f}\not\in \bar{S}$. Since $\underline{f}\in S_{X+Y}$, for any $\delta>0$ and A defined above we have

$$(P * Q)(A) = \int_{H(G_1,...,G_n)} P(A - \underline{g})Q(d\underline{g}) > 0.$$

The later inequality is possible only it there exists a point $\underline{u} \in S_Y$ such that $P(A - \underline{u}) > 0$. Therefore there exists a point $\underline{v} \in S_X$ in the sphere $\{\underline{g} : \varrho(\underline{f} - \underline{u}, \underline{g}) < \delta\}$. Then $\varrho(\underline{f}, \underline{u} + \underline{v}) < \delta$ and $\underline{f}' = \underline{u} + \underline{v} \in S$. Moreover, if $\delta \to 0$ then $\underline{f}' \to \underline{f}$. Thus, $\underline{f} \in \overline{S}$, and this contradiction proves that $\overline{S} \supseteq S_{X+Y}$. The lemma is proved.

Now let $\{A_m\}$ be a sequence of sets on $H(G_1, \ldots, G_n)$. By $\lim A_m$ denote a set of such $\underline{f} \in H(G_1, \ldots, G_n)$ that every neighbourhood of \underline{f} contains at least one point belonging to almost all sets A_m .

Lemma 3. Let P_n and P be probability measures on $(H(G_1, \ldots, G_n), \mathcal{B}(H(G_1, \ldots, G_n)))$ and let P_n converge weakly to P as $n \to \infty$. Then $S_P \subseteq \text{Lim } S_{P_n}$.

Proof. Let $\underline{f} \in S_P$, and, for $\varepsilon > 0$, $A_{\varepsilon} = \{\underline{g} \colon \varrho(\underline{f},\underline{g}) < \varepsilon\}$. For a fixed \underline{f} the boundaries of the spheres $\varrho(\underline{f},\underline{g}) < \varepsilon$ do not intersect for different ε . Therefore we can choose ε such that A_{ε} should be the continuity set of P. Then the properties of the weak convergence yield

$$\lim_{n\to\infty}P_n(A_{\varepsilon})=P(A_{\varepsilon})>0.$$

So, we have $P_n(A_{\varepsilon})>0$ for $n>n_0(\underline{f},\varepsilon)$. For these $n>n_0$ the distance of \underline{f} from S_{P_n} does not exceed ε . Hence, since ε is an arbitrary number, we find that $f\in \operatorname{Lim} S_{P_n}$. Therefore $S_P\subseteq \operatorname{Lim} P_n$.

Proof of the Theorem. Let $\{X_m\}$ be given on $(\Omega, \mathcal{F}, \mathbb{P})$, and

$$X = \sum_{m=1}^{\infty} X_m = L_n + R_n,$$

where

$$L_n = \sum_{m=1}^m X_m, \quad R_n = \sum_{m=n+1}^\infty X_m.$$

Since the series of the theorem converges almost surely, for any $\varepsilon > 0$

$$\mathbb{P}(\omega \in \Omega: \varrho(R_n, \underline{0}) \geqslant \varepsilon) \to 0, \qquad n \to \infty.$$
 (1)

Let

$$P_n(A) = \mathbb{P}(L_n \in A), \quad P(A) = \mathbb{P}(X \in A), \quad A \in \mathcal{B}(H(G_1, \dots, G_n)).$$

Then the above relations imply the weak convergence of P_n to P as $n \to \infty$. Therefore in view of Lemma 3

$$S_X \subseteq \operatorname{Lim} S_{L_n}. \tag{2}$$

Now let $\underline{f}_0 \in \operatorname{Lim} S_{L_n}$, and, for any $\delta > 0$,

$$A_{\delta} = \{\underline{f} \colon \varrho(\underline{f}, \underline{f}_{0}) < \delta\}.$$

Then there exists n_1 such that for $n > n_1$

$$\mathbb{P}(L_n \in A_{\varepsilon}) = P_n(A_{\varepsilon}) > 0. \tag{3}$$

Define $B_{\delta} = \{f: \varrho(f,\underline{0}) < \delta\}$. Then by (1) for $n > n_2$

$$\mathbb{P}(R_n \in B_\delta) > 0. \tag{4}$$

Let $Q_n(A) = \mathbb{P}(R_n \in A)$, $A \in \mathcal{B}(H(G_1, \dots, G_n))$. Then we have that $P = P_n * Q_n$. Hence, from (3), (4) and Lemma 1 we obtain

$$P(A_{2\delta}) \int_{H(G_1,...,G_n)} P_n(A_{2\delta} - \underline{g}) Q_n(d\underline{g})$$

$$\geqslant \int_{B_{\delta}} P_n(A_{2\delta} - \underline{g}) Q_n(d\underline{g}) \geqslant P_n(A_{\delta} \int_{B_{\delta}} Q_n(d\underline{g}) = P_n(A_{\delta}) Q_n(B_{\delta}) > 0$$

for $n\geqslant n_3=\max(n_1,n_2)$. This means that $f_0\in S_X$. Therefore $S_X\supseteq \lim S_{L_n}$. This and (2) imply

$$S_X = \lim S_{L_n}. \tag{5}$$

Since X_1, \ldots, X_n are independent, by Lemma 2 we have that S_{L_n} is the closure of the set of all $\underline{f} \in H(G_1, \ldots, G_n)$ which can be written as a sum

$$\underline{f} = \sum_{m=1}^{n} \underline{f}_{m}, \quad \underline{f}_{m} \in S_{X_{m}}.$$

Now if $f \in S_X$, then there exists a sequence $\{g_n: \underline{g}_n \in S_{L_n}\}$ and $\lim_{n \to \infty} \underline{g}_n = \underline{f}$. This together with (5) yield the assertion of the lemma.

References

[1] J.B. Conway, Functions of One Complex Variable, Springer-Verlag, New York (1973).

Apie H(D)-reikšmius atsitiktinius elementus

A. Laurinčikas

Straipsnyje nagrinėjamas nepriklausomų $H(G_1) \times \ldots \times H(G_n)$ -reikšmių atsitiktinių elementų eilutės nešėjas. Čia H(D) yra funkcijų, analizinių srityje D, erdvė su tolygaus konvergavimo ant kompaktų topologija.