A limit theorem for the Lerch zeta-function

Jolita IGNATAVIČIŪTĖ (VU)

e-mail: jolita.ignataviciute@maf.vu.lt

Let $s=\sigma+it$ be a complex variable, and let $L(\lambda,\alpha,s)$ denote the Lerch zeta-function, defined for $\sigma>1$ by the following Dirichlet series

$$L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}.$$

Here $\lambda \in \mathbb{R}$, $0 < \alpha \leqslant 1$ are fixed parameters. The function $L(\lambda, \alpha, s)$ is analytically continuable over the complex plane.

Let $D=\{s\in\mathbb{C}:\sigma>\frac{1}{2}\}$, and let H(D) stand for the space of analytic functions on D with the topology of uniform convergence on compacta. Let $N\in\mathbb{N}\cup\{0\}$, and let h>0 be a fixed number such that $\exp\{2\pi k/h\}$ is rational for all $k\in\mathbb{Z}$. We suppose that $\lambda\not\in\mathbb{Z}$, and α is a transcendental number. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and let

$$\mu_N(\ldots) = \frac{1}{N+1} \# \{0 \leqslant k \leqslant N, \ldots\},$$

where in the place of dots we write a condition satisfied by k.

In [1] a limit theorem for the probability measure

$$P_N(A) = \mu_N(L(\lambda, \alpha, s + ikh) \in A), \quad A \in \mathcal{B}(H(D))$$

was proved.

The purpose of this article is to obtain an explicit form of the limit measure P. Define the probability measure

$$P_{N,p_n}(A) = \mu_N(p_n(s+ikh,\alpha) \in A), \quad A \in \mathcal{B}(H(D)),$$

where

$$p_n(s,\alpha) = \sum_{m=0}^n \frac{a(m)}{(m+\alpha)^s}, \quad a(m) \in \mathbb{C},$$

is an arbitrary Dirichlet polynomial.

Lemma 1. There is a probability measure P_{p_n} on $(H(D), \mathcal{B}(H(D)))$ such that the measure P_{N,p_n} converges weakly to P_{p_n} as $N \to \infty$.

Poof of the lemma is given in [1].

Let $g(m), m = 0, 1, \ldots$, be an unimodular function, and define an arbitrary Dirichlet polynomial by

$$p_n(s,g,\alpha) = \sum_{m=0}^{\infty} \frac{a(m)g(m)}{(m+\alpha)^s}, \quad a(m) \in \mathbb{C}.$$

Define the probability measure

$$\widetilde{P}_{N,p_n}(A) = \mu_N(p_n(s+ikh,g,\alpha) \in A), \quad A \in \mathcal{B}(H(D)).$$

Lemma 2. The probability measures P_{N,p_n} and \widetilde{P}_{N,p_n} both converge weakly to the same probability measure P_{p_n} on $(H(D), \mathcal{B}(H(D)))$ as $N \to \infty$.

Proof. Let

$$\Omega_n = \prod_{m=0}^n \gamma_m,$$

where $\gamma_m = \gamma = \{s \in \mathbb{C} : |s| = 1\}$ for all m = 0, 1, ..., n, and let m_n stand for the Haar measure on $(\Omega_n, \mathcal{B}(\Omega_n))$. Define the function $h : \Omega_n \longrightarrow H(D)$ by the formula

$$h(x_0,\ldots,x_n)=\sum_{m=0}^n\frac{a(m)}{(m+\alpha)^sx_m},\quad (x_0,\ldots,x_n)\in\Omega_n.$$

In the proof of Lemma 1 it was shown that $P_{p_n}=m_nh^{-1}$. Define the function \tilde{h} in a similar manner as h. By Lemma 1 the probability measure \tilde{P}_{N,p_n} converges weakly to m_nh^{-1} as $N\to\infty$. Define the function $h_1:\Omega_n\longrightarrow\Omega_n$ by the formula

$$h_1(x_0,\ldots,x_n)=\left(x_0e^{-i\Theta_0},\ldots,e^{-i\Theta_n}\right),$$

where $\Theta_m = \arg g(m)$, m = 0, 1, ..., n. Obviously,

$$\widetilde{h}(x_0,\ldots,x_n) = \sum_{m=0}^n \frac{a(m)g(m)}{(m+\alpha)^s x_m}$$

$$= \sum_{m=0}^n \frac{a(m)}{(m+\alpha)^s x_m} \exp\{i\Theta_m\} = h(h_1(x_0,\ldots,x_n)).$$

Consequently,

$$m_n \widetilde{h}^{-1} = m_n (h(h_1))^{-1} = (m_n h_1^{-1}) h^{-1}.$$

Since the Haar measure m_n is invariant with respect to the translation by points in Ω_n , it follows that $m_n \tilde{h}^{-1} = m_n h^{-1}$. This proves the lemma.

Let

$$a_h = \{(m+\alpha)^{-ih}, m = 0, 1, \ldots\},\$$

and

$$\Omega = \prod_{m=0}^{\infty} \gamma_m,$$

 $\gamma_m = \gamma = \{s \in \mathbb{C} : |s| = 1\}$. Define a transformation φ_h by

$$\varphi_h(\omega) = a_h \omega, \quad \omega \in \Omega.$$

A set $A \in \mathcal{B}(\Omega)$ is called an invariant set with respect to the transformation φ_h if the sets A and $A_h = \varphi_h(A)$ differ one from another by the set of zero m_H -measure. The transformation φ_h is called ergodic if its σ -field of invariant sets consists only of sets having m_H -measure equal to 0 or 1 (see [5]).

Lemma 3. The transformation φ_h is ergodic.

Proof. Let $A \in \mathcal{B}(\Omega)$ be such that $m_H(A \triangle A_h) = 0$. Let χ be a nontrivial character of Ω . It is known (see [2]) that there exists a positive rational number $r = \frac{l}{m}$ such that

$$\chi(\omega) = \omega(r) = \frac{\omega(l)}{\omega(k)}.$$

Consequently,

$$\chi(a_h) = (r + \alpha)^{-ih}.$$

If $\chi(a_h) = 1$ then

$$r+lpha=\exp\left\{rac{2\pi k_0}{h}
ight\}$$

with some k_0 . Since $\exp\{2\pi k/h\}$ is rational for all integers, hence we deduce that $k_0=0$ and therefore $r+\alpha=1$. However then χ is the trivial character of Ω . Consequently, $\chi(a_h)\neq 1$.

Since the set A is invariant, the Fourier transform of its indicator is

$$\widehat{I}_A(\chi) = \int\limits_{\Omega} \chi(\omega) I_A(\omega) m_H(d\omega) = \int\limits_{\Omega} \chi(a_h \omega) I_A(a_h \omega) m_H(d\omega) = \chi(a_h) \widehat{I}_A(\chi).$$

Hence $\widehat{I}_A(\chi) = 0$ for all nontrivial characters of Ω . Let χ_0 be the trivial character of Ω . Suppose that $\widehat{I}_A(\chi_0) = u$. Therefore

$$\widehat{I}_A(\chi) = u \int\limits_{\Omega} \chi(\omega) m_H(d\omega) = \widehat{u}(\chi)$$

for each character χ of Ω . Since $I_A(\omega)$ is uniquely determined by its Fourier transform, we obtain that $m_H(A) = 0$ or $m_H(A) = 1$. The lemma is proved.

Let $\omega(m)$, $m=0,1,\ldots$, stand for the projection of $\omega\in\Omega$ to the coordinate space γ_m . Set

$$L(\lambda, \alpha, s, \omega) = \sum_{m=1}^{\infty} L_m(\lambda, \alpha, s, \omega),$$

where

$$L_m(\lambda, \alpha, s, \omega) = \frac{\omega(m)e^{2\pi i\lambda m}}{(m+\alpha)^s}, \quad m=1,2,\ldots,$$

and

$$L_0(\lambda, \alpha, s, \omega) = |L(\lambda, \alpha, s, \omega)|^2$$
.

It is known (see [4]) that $L(\lambda, \alpha, s, \omega)$ is a H(D)-valued random element on $(\Omega, \mathcal{B}(\Omega), m_H)$.

Lemma 4. We have

$$\sum_{k=0}^{N} |L(\lambda, \alpha, s + ikh, \omega)|^2 = BN, \quad N \to \infty,$$

for $\sigma > \frac{1}{2}$ and for almost all $\omega \in \Omega$.

Proof. Taking into account the pairwise orthogonality of the random variables $L_m(\lambda, \alpha, s, \omega)$, we find that

$$EL_0(\lambda,\alpha,s,\omega) = \sum_{m=1}^{\infty} E\big|L_m(\lambda,\alpha,s,\omega)\big|^2 = \sum_{m=1}^{\infty} \frac{1}{(m+\alpha)^{2\sigma}} < \infty.$$

It is obvious that

$$L_0(\lambda, \alpha, s, \varphi_h^k(\omega)) = \left| L(\lambda, \alpha, s, a_{kh}\omega) \right|^2 = \left| L(\lambda, \alpha, s + ikh, \omega) \right|^2.$$

In view of Lemma 3 and the well-known Birkhoff theorem (see [5])

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{k=0}^{N}L_0(\lambda,\alpha,s,\varphi_h^k(\omega))=EL_0(\lambda,\alpha,s,\omega)<\infty$$

for almost all $\omega \in \Omega$. This proves the lemma.

The series

$$\sum_{m=0}^{\infty} \frac{\omega(m)e^{2\pi i\lambda m}}{(m+\alpha)^s}$$

converges uniformly on compact subsets of D for almost all $\omega \in \Omega$. This fact was obtained in [4]. Denote by Ω_1 the subset of Ω such that both the latter assertion and Lemma 4 are true for $\omega \in \Omega_1$. Then $m(\Omega_1) = 1$.

Lemma 5. Let K be a compact subset of D. Then

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{k=0}^{N} \left| L(\lambda, \alpha, s+ikh, \omega) - L_n(\lambda, \alpha, s+ikh, \omega) \right| = 0$$

for $\omega \in \Omega_1$.

Poof is a slight modification of the proof in [1, Lemma 6].

In [1] it was proved that for $\sigma_1 > \frac{1}{2}$

$$L_n(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s} \exp \left\{ -\left(\frac{m+\alpha}{n+\alpha}\right)^{\sigma_1} \right\},$$

and the series being absolutely convergent for $\sigma > \frac{1}{2}$. Also the probability measure

$$P_{N,n}(A) = \mu_N(L_n(\lambda, \alpha, s + ikh) \in A), \quad A \in \mathcal{B}(H(D)),$$

was defined.

Lemma 6. There exists a probability measure P_n on $(H(D), \mathcal{B}(H(D)))$ such that the measure $P_{N,n}$ converges weakly to P_n as $N \to \infty$.

Proof of the lemma is given in [1].

Define the probability measure

$$\widetilde{P}_{N,n}(A) = \mu_N(L_n(\lambda, \alpha, s + ikh, \omega) \in A), \quad A \in \mathcal{B}(H(D)),$$

for $\omega \in \Omega_1$.

Lemma 7. There exists a probability measure P_n on $(H(D), \mathcal{B}(H(D)))$ such that the measures $P_{N,n}$ and $\widetilde{P}_{N,n}$ both converge weakly to P_n as $N \to \infty$.

The proof of the lemma is similar to that of Lemma 6.

Now we will deal with the probability measure

$$\widetilde{P}_N(A) = \mu_N(L(\lambda, \alpha, s + ikh, \omega) \in A), \quad A \in \mathcal{B}(H(D)).$$

Reasoning similarly to the proof of the Theorem in [1] we obtain the following result.

Lemma 8. There exists a probability measure P on $(H(D), \mathcal{B}(H(D)))$ such that the measures P_N and \widetilde{P}_N both converge weakly to P as $N \to \infty$.

Let P_L denote the distribution of $L(\lambda, \alpha, s, \omega)$, i.e.

$$P_L(A) = m_H(\omega \in \Omega : L(\lambda, \alpha, s, \omega) \in A), \quad A \in \mathcal{B}(H(D)).$$

Theorem. The measure P_N converges weakly to P_L on $(H(D), \mathcal{B}(H(D)))$ as $N \to \infty$.

Proof. Let $A \in \mathcal{B}(H(D))$ be a continuity set of P. The properties of weak convergence and the assertion of Lemma 8 imply that

$$\lim_{N\to\infty}\mu_N(L(\lambda,\alpha,s+ikh,\omega)\in A)=P(A)$$

for $\omega \in \Omega_1$. Let us fix the set A and define the random variable θ on $(\Omega, \mathcal{B}(\Omega), m_H)$ by

$$\theta(\omega) = \begin{cases} 1, & \text{if } L(\lambda, \alpha, s, \omega) \in A, \\ 0, & \text{if } L(\lambda, \alpha, s, \omega) \notin A. \end{cases}$$

Hence $E\theta=\int\limits_{\Omega}\theta dm_H=m(\omega:L(\lambda,\alpha,s,\omega)\in A)=P_L(A)$. By Lemma 3 and the Birkhoff theorem

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \theta(\varphi_h^k(\omega)) = E\theta$$

for almost all $\omega \in \Omega$. Thus

$$P(A) = P_L(A)$$

for any continuity set of P. Since the continuity sets constitute the determining class, we have

$$P(A) = P_L(A)$$

for all $A \in \mathcal{B}(H(D))$. The theorem is proved.

References

- [1] J. Ignatavičiūtė, A limit theorem for the Lerch zeta-function, Fizikos ir matematikos fakulteto mokslinio seminaro darbai (to appear).
- [2] A. Laurinčikas, Limit Theorems for the Riemann zeta-function, Kluwer Academic Publishers, Dodrecht, Boston, London (1996).
- [3] A. Laurinčikas, A limit theorem for the Lerch zeta-function on the space of analytic functions, *Liet. Mat. Rink.*, 37, 191–203 (1997) (in Russian).
- [4] A. Laurinčikas, On the limit distribution of the Lerch zeta-function, New Trends of Probability and Statistics, Vol. 4, TEV/VSP, Vilnius/Utrecht, 135–145 (1997).
- [5] A. A. Tempelman, Ergodic Theorems on Groups, Mokslas, Vilnius (1986).

Ribinė teorema Lercho dzeta funkcijai

J. Ignatavičiūtė

Straipsnyje įrodoma diskrečioji ribinė teorema Lercho dzeta funkcijai analizinių funkcijų erdvėje.