On the value-distribution of Matsumoto zeta-function on the complex plane

Roma KAČINSKAITĖ (VU)

e-mail: roma.kacinskaite@maf.vu.lt

Let $\mathbb N$ and $\mathbb C$ denote the sets of natural and complex numbers, respectively. For any integer m, we define a positive integer g(m). Let $a_m^{(j)}$ be complex numbers, and f(j,m), $1 \le j \le g(m), m \in \mathbb N$, be natural numbers. We define the polynomials

$$A_m(X) = \prod_{j=1}^{g(m)} \left(1 - a_m^{(j)} X^{f(j,m)}\right)$$

of degree $f(1, m) + \ldots + f(g(m), m)$. In [7] K. Matsumoto introduced the zeta-function

$$\varphi(s) = \prod_{m=1}^{\infty} A_m^{-1}(p_m^{-s}),$$

where $s = \sigma + it$ is a complex variable, and p_m denotes the mth prime number. Under some hypotheses on g(m), $a_m^{(j)}$ and $\varphi(s)$ he proved the limit theorems for $\log \varphi(s)$ in the complex plane.

Let B denote a number (not always the same) bounded by a constant. Suppose that

$$g(m) = Bp_m^{\alpha}, \quad \left| a_m^{(j)} \right| \leqslant p_m^{\beta} \tag{1}$$

with non-negative constants α and β . Then $\varphi(s)$ is a holomorphic function in the halfplane $\sigma > \alpha + \beta + 1$ with no zeros. Let, for $\sigma > \beta$,

$$\log \varphi(s) = -\sum_{m=1}^{\infty} \sum_{j=1}^{g(m)} \text{Log} \left(1 - a_m^{(j)} p_m^{-f(j,m)s}\right),\,$$

and let R denote a closed rectangle on the complex plane with the edges parallel to the axes. The first theorem of [7] asserts that the limit

$$\lim_{T\to\infty}\frac{1}{T}meas\{t\in[0,T],\,\log\varphi(\sigma_0+it)\in R\}$$

exists. Here $meas\{A\}$ stands for the Lebesgue measure of the set A, and T>0.

Let ρ_0 be a constant with $\alpha + \beta + \frac{1}{2} \le \rho_0 \le \alpha + \beta + 1$, and we assume that $\varphi(s)$ can be meromorphically continued to the region $\sigma \ge \rho_0$. All poles of $\varphi(s)$ belong to a compact set, for $\sigma \ge \rho_0$,

$$|\varphi(\sigma+it)|=B\big|t\big|^{\delta}$$

with some positive δ , and

$$\int_{0}^{T} \left| \varphi(\rho_0 + it) \right|^2 \mathrm{d}t = BT.$$

We put

$$G = \{ s \in \mathbb{C}, \ \sigma \geqslant \rho_0 \} \setminus \bigcup_{s' = \sigma' + it'} \{ s = \sigma + it', \ \rho_0 \leqslant \sigma \leqslant \sigma' \},$$

where $s' = \sigma' + it'$ runs all possible zeros and poles of $\varphi(s)$ in the strip $\rho_0 \leqslant \sigma \leqslant \alpha + \beta + 1$. Define $\varphi(\sigma_0 + it_0)$ for $\sigma_0 + it_0 \in G$ by analytic continuation along the path $s = \sigma + it_0$, $\sigma \geqslant \sigma_0$. In the second theorem of [7] is proved the existence of the limit

$$\lim_{T \to \infty} \frac{1}{T} meas \{ t \in [0, T], \ \sigma_0 + it \in G, \ \log \varphi(\sigma_0 + it) \in R \}$$
 (2)

for $\sigma_0 \geqslant \rho_0$.

The lower and upper bounds for (2) were obtained in [1], [8], [9].

Limit theorems for the function $\varphi(s)$ in the spaces of analytic and meromorphic functions were proved in [3]. The explicit form of a limit measure in these theorems was given in [4] and [5]. In [6] the universality property for the function $\varphi(s)$ was obtained.

Let h be a fixed number, and let, for $N \in \mathbb{N}$,

$$\mu_N(\ldots) = \frac{1}{N+1} \# \{0 \leqslant k \leqslant N, \ldots\},$$

where instead of dots a condition satisfied by k is to be written. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and define a probability measure

$$P_N(A) = \mu_N(\varphi(\sigma + ikh) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

Denote by γ the unit circle on \mathbb{C} , i.e., $\gamma = \{s \in \mathbb{C} : |s| = 1\}$, and let

$$\Omega = \prod_{p} \gamma_{p},$$

where $\gamma_p = \gamma$ for all primes p. With the product topology and pointwise multiplication, the infinite-dimensional torus Ω is a compact topological group. Then there exists a probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$. This yields a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$.

Let $\omega(p)$ stand for the projection of $\omega \in \Omega$ onto the coordinate space γ_p . Setting

$$\omega(k) = \prod_{p^r \parallel k} \omega^r(p),$$

where $p^r || k$ means that $p^r | k$ but $p^{r+1} \not\mid k$, we obtain an extention of the function $\omega(p)$ to the set \mathbb{N} as a completely multiplicative unimodular function.

For $\sigma > \alpha + \beta + \frac{1}{2}$, define on $(\Omega, \mathcal{B}(\Omega), m_H)$ the complex-valued random element $\varphi(\sigma + it, \omega)$ by

$$\varphi(\sigma + it, \omega) = \sum_{k=1}^{\infty} \frac{b(k)\omega(k)}{k^{\sigma + it}}.$$

Denote by P_{φ} a distribution of the random element $\varphi(\sigma + it, \omega)$, i.e.,

$$P_{\varphi}(A) = m_H(\varphi(\sigma + it, \omega) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

Theorem. Suppose that $\exp\left\{\frac{2\pi k}{h}\right\}$ is irrational for all integers $k \neq 0$. Then, for $\sigma > \alpha + \beta + \frac{1}{2}$, the probability measure P_N converges weakly to P_{φ} as $N \to \infty$.

We will give the sketch of the proof only.

We begin the proof of the Theorem with a discrete limit theorems for a trigonometrical polynomial

$$p_n(t) = \sum_{k=1}^n a_k k^{-it}, \quad a_m \in \mathbb{C}.$$

Define a probability mesure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$

$$P_{N,p_n}(A) = \mu_N(p_n(mh) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

Than we prove that there exists a probability measure P_{p_n} on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that the measure P_{N,p_n} converges weakly to P_{p_n} as $N \to \infty$.

After this we define

$$p_n(t,g) = \sum_{k=1}^n a_k g(k) k^{-it},$$

and

$$\widetilde{P}_{N,p_n} = \mu_N(p_n(mh,g) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

where g(k), $k \in \mathbb{N}$, is a completely multiplikative function, and show that the probability measures P_{N,p_n} and \widetilde{P}_{N,p_n} both converge weakly to the same measure as $N \to \infty$.

Now we prove assertion for absolutely convergent Dirichlet series. Let $\sigma_1 > \frac{1}{2}$, and

$$\varphi_n(s) = \sum_{m=1}^{\infty} \frac{b(m)}{m^s} \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}.$$

Define the function

$$l_n(s) = \frac{s}{\sigma_1} \Gamma\left(\frac{s}{\sigma_1}\right) n^s,$$

and

$$a_n(m) = \frac{1}{2\pi i} \int_{\sigma_1 - i\infty}^{\sigma_1 + i\infty} \frac{l_n(s) ds}{sm^s},$$

where $\Gamma(s)$ is the Euler gamma-function. Let

$$\varphi_n(s,\omega) = \sum_{m=1}^{\infty} \frac{b(m)\omega(m)}{m^s} \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}, \quad \omega \in \Omega.$$

Define two probability measures

$$P_{N,n}(A) = \mu_N(\varphi_n(\sigma + imh) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

and

$$\widetilde{P}_{N,n}(A) = \mu_N(\varphi_n(\sigma + imh, \omega) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

After this we show that there exists a probability measure P_n on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that both the measures $P_{N,n}$ and $\widetilde{P}_{N,n}$ converge weakly to P_n as $N \to \infty$.

We approximate the function $\varphi(s)$ in the mean by $\varphi_n(s)$, i.e., we prove that in the half-plane $\sigma > \alpha + \beta + \frac{1}{2}$

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{k=0}^{N} \left| \varphi(\sigma + ikh) - \varphi_n(\sigma + ikh) \right| = 0.$$
 (3)

Let $a_h = \{p^{-ih}, p \text{ is prime}\}$. We define a transformation φ_h on Ω taking the value $\varphi_h(\omega) = a_h \omega$ for $\omega \in \Omega$. Then φ_h is a measurable measure-preserving transformation on $(\Omega, \mathcal{B}(\Omega), m_H)$. Applying elements of ergodic theory [10] we proof that φ_h is ergodic transformation.

Now let T be a measurable measure-preserving ergodic transformation on the space $(\widetilde{\Omega}, F, m)$. Then in [10] is proved that for every $f \in L^1(\Omega, F, m)$, for almost all $\omega \in \widetilde{\Omega}$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(T^k\omega)=E(f).$$

Denote by Ω_1 a subset of Ω such that for $\omega \in \Omega_1$ the series

$$\sum_{k=1}^{\infty} \frac{b(k)\omega(k)}{k^{\sigma+it}}$$

converges and, for $\sigma > \alpha + \beta + \frac{1}{2}$,

$$\sum_{k=0}^{N} |\varphi(\sigma + ikh, \omega)|^2 dt = BN.$$

We have that $m_H(\Omega_1) = 1$.

We can proof that in the half-plane $\sigma > \alpha + \beta + \frac{1}{2}$, for $\omega \in \Omega_1$,

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{k=0}^{N} \left| \varphi(\sigma+ikh,\omega) - \varphi_n(\sigma+ikh,\omega) \right| = 0.$$

Now let, for $\omega \in \Omega_1$,

$$\widetilde{P}_N(A) = \mu_N (\varphi(\sigma + ikh, \omega) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

It is proved that both the measures $P_{N,n}$ and $\widetilde{P}_{N,n}$ converge weakly to the same measure P_n as $N \to \infty$. From this it follows that the family of the probability measures P_n is relatively compact. We obtain by the Prochorov theorem that it is also tight.

Let $A \in \mathcal{B}(\mathbb{C})$ be a continuity set of P. For $\omega \in \Omega_1$ we have

$$\lim_{N \to \infty} \mu_N(\varphi(s + ikh, \omega) \in A) = P(A). \tag{4}$$

Now we fix the set A and define the random variable η on $(\Omega, \mathcal{B}(\Omega), m_H)$ by the formula

$$\eta(\omega) = \begin{cases} 1 & \text{if } \varphi(\sigma, \omega) \in A, \\ 0 & \text{if } \varphi(\sigma, \omega) \notin A. \end{cases}$$

Then, clearly,

$$E(\eta) = \int_{\Omega} \eta dm_H = m_H(\omega : \varphi(\sigma, \omega) \in A) = P_{\varphi}(A). \tag{5}$$

We find that

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \eta(\varphi_h^k(\omega)) = E\eta \tag{6}$$

for almost all $\omega \in \Omega$. However, the definitions of η and of φ_h give

$$\frac{1}{N+1} \sum_{k=0}^{N} \eta(\varphi_h^k(\omega)) = \mu_N(\varphi(\sigma + ikh, \omega) \in A).$$

From this, (5) and (6) we find that

$$\lim_{N \to \infty} \mu_N \big(\varphi(\sigma + ikh, \omega) \in A \big) = P_{\varphi}(A)$$

for almost all ω . Therefore, by (4)

$$P(A) = P_{\varphi}(A)$$

for any continuity set A of P. Since the continuity sets constitute the determining class, we obtain that

$$P(A) = P_{\varphi}(A)$$

for all $A \in \mathcal{B}(\mathbb{C})$. The theorem is proved.

References

- [1] T. Hattori and K. Matsumoto, Large deviations of Montgomery type and its application to the theory of zeta-functions, *Acta Arith.*, 71, 79–94 (1995).
- [2] A.Laurinčikas, Limit Theorems for the Riemann zeta-function, Kluwer, Dordrecht (1996).
- [3] A. Laurinčikas, Limit theorems for the Matsumoto zeta-function, J. Théor. Nombres Bordeaux, 8, 143–158 (1996).
- [4] A. Laurinčikas, On limit distribution of the Matsumoto zeta-function, *Liet. Mat. Rink.*, 36, 464–485 (1996).
- [5] A. Laurinčikas, On limit distribution of the Matsumoto zeta-function, Acta Arith., 79, 31–39 (1997).
- [6] A. Laurinčikas, On the Matsumoto zeta-function, *Acta Arith.*, 84, 1–16 (1998).
- [7] K. Matsumoto, Value distribution of zeta-functions, Lecture Notes in Math., Springer, 1434, 178–187 (1990).
- [8] K. Matsumoto, On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products, Acta Arith., 60, 125-147 (1990).
- [9] K. Matsumoto, Asymptotic probability measures of Euler products, *Proceedings of the Amalfi Conference on Analytic Number Theory* (Maiori, 1989), Univ. Salerno, 295–313 (1992).
- [10] A.A. Tempelman, Ergodic Theorems on Groups, Mokslas, Vilnius (1986).

Apie Matsumoto dzeta funkcijos reikšmių pasiskirstymą kompleksinėje plokštumoje

R. Kačinskaitė

Straipsnyje įrodoma diskrečioji ribinė teorema Matsumoto dzeta funkcijai tikimybinių matų silpno konvergavimo prasme kompleksinėje plokštumoje.