On the mean square of the Lerch zeta-function with respect to the parameter

Antanas LAURINČIKAS* (VU, ŠU)

e-mail: antanas.laurincikas@maf.vu.lt

The Lerch zeta-function $L(\lambda, \alpha, s)$, $s = \sigma + it$, for $\sigma > 1$, is defined by

$$L(\lambda,\alpha,s) = \sum_{m=0}^{\infty} \frac{\mathrm{e}^{2\pi i \lambda m}}{(m+\alpha)^s} \,,$$

and by analytic continuation elsewhere. Here λ and $\alpha>0$ are fixed real parameters. If λ is an integer, then the function $L(\lambda,\alpha,s)$ reduces to the Hurwitz zeta-function $\zeta(s,\alpha)$. When λ is not an integer, then the function $L(\lambda,\alpha,s)$ is analytically continuable to an entire function.

Let

$$\widetilde{L}(\lambda, \alpha, s) = L(\lambda, \alpha, s) - \alpha^{-s},$$

and

$$I(s,\lambda) = \int\limits_0^1 \left|\widetilde{L}(\lambda,lpha,s)
ight|^2 \mathrm{d}lpha.$$

The aim of this paper is to obtain the formulae for $I(\frac{1}{2}+it,\lambda)$ and $I(1+it,\lambda)$ by using a formula for $I(\sigma+it,\lambda), \frac{1}{2}<\sigma<1$.

Define the function $\zeta(\lambda, s)$, for $\sigma > 1$, by

$$\widetilde{\zeta}(\lambda, s) = \sum_{m=1}^{\infty} \frac{\mathrm{e}^{2\pi i \lambda m}}{m^s},$$

and by analytic continuation elsewhere. Let, as usual, $\Gamma(s)$ stand for the Euler gamma-function, t_0 be a positive number, and B denote a number bounded by a constant.

Theorem A. Let $\frac{1}{2} < \sigma < 1$ be fixed and $t \ge t_0$. Then for any real λ

$$I(\sigma+it,\lambda) = rac{1}{2\sigma-1} + 2\Gamma(2\sigma-1)\Reigg(\widetilde{\zeta}(\lambda,2\sigma-1)rac{\Gamma(1-\sigma+it)}{\Gamma(\sigma+it)}igg)$$

^{*}Partially supported by Lithuanian State Studies and Science Foundation.

$$-2\Re\frac{1}{1-\sigma+it}\left(e^{-2\pi i\lambda}\widetilde{\zeta}(\lambda,\sigma+it)-1\right)+Bt^{-1}.$$

Proof of Theorem A can be found in [1], [2]. Let γ be the Euler constant.

Theorem 1. Let $t \ge t_0$. Then for any real λ

$$\begin{split} I\left(\frac{1}{2}+it,\lambda\right) &= \gamma + 2\Re\left(\widetilde{\zeta}'(\lambda,0) - \widetilde{\zeta}(\lambda,0) \frac{\Gamma'\left(\frac{1}{2}+it\right)}{\Gamma\left(\frac{1}{2}+it\right)}\right) \\ &- 2\Re\frac{\mathrm{e}^{-2\pi i\lambda}\widetilde{\zeta}\left(\lambda,\frac{1}{2}+it\right) - 1}{\frac{1}{2}+it} + Bt^{-1}. \end{split}$$

Theorem 2. Let $t \ge t_0$ and $0 < \lambda < 1$. Then

$$I(1+it,\lambda) = 1 + \pi(1-2\lambda)t^{-1} - 2\Re\frac{1}{it} \left(e^{-2\pi i\lambda}\widetilde{\zeta}(\lambda, 1+it) - 1\right) - 2\Re\frac{1}{it} \sum_{m=1}^{\infty} \frac{e^{2\pi i\lambda m}}{m(m+1)^{1+it}}.$$

For the proof of Theorem 1 we will apply some results on the summation of divergent series. We recall the summation in the Abel sense. Suppose that the series

$$\sum_{m=0}^{\infty} a_m x^m,$$

for 0 < x < 1, converges and has a sum f(x). If

$$\lim_{x \to 1-0} f(x) = A,$$

then the series

$$\sum_{m=0}^{\infty} a_m$$

is called summable in the Abel sense, and A is its generalized sum.

Lemma 1. Let $0 < \lambda < 1$. Then for all s the series

$$\sum_{m=1}^{\infty} \frac{\mathrm{e}^{2\pi i \lambda m}}{m^s}$$

is summable in the Abel sense and has the generalized sum $\widetilde{\zeta}(\lambda, s)$.

Proof. First of all we note that $\widetilde{\zeta}(\lambda, s)$ is an entire function. This can be obtained similarly to the case of the Lerch zeta-function discussed in Section 2.2 of [1].

Let 0 < x < 1. Then, for $\sigma > 1$,

$$\sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m}}{m^s} x^m = \sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m} x^m}{\Gamma(s)} \int_0^{\infty} e^{-mu} u^{s-1} du$$

$$= \frac{1}{\Gamma(s)} \int_0^{\infty} u^{s-1} \sum_{m=1}^{\infty} e^{2\pi i \lambda m} x^m e^{-mu} du$$

$$= \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x e^{2\pi i \lambda} e^{-u} u^{s-1}}{1 - x e^{2\pi i \lambda} e^{-u}} du.$$

By analytic continuation this remains true for all s. Similarly as in [1], Section 2.2, hence we find that

$$\sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m} x^m}{m^s} = \frac{e^{-\pi i s} \Gamma(1-s)}{2\pi i} \int_{L} \frac{x e^{2\pi i \lambda} e^{-z} z^{s-1}}{1 - x e^{2\pi i \lambda} e^{-z}} dz.$$
 (1)

Here the contour L consists of the part of the real axis from ∞ to 0, encloses the point z=0 and returns to ∞ . The points $\log x + 2\pi i \lambda + 2\pi i k$, k is an integer, do not belong to this contour and its interior.

The right-hand side of the equality (1) converges uniformly to a limit as $x \to 1-0$ on every bounded part of s-plane non-containing the points s=n where n is a natural number. By the principle of analytic continuation this limit is $\widetilde{\zeta}(\lambda,s)$. The case s=n is trivial. Therefore, for all s,

$$\lim_{x \to 1-0} \sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m} x^m}{m^s} = \widetilde{\zeta}(\lambda, s),$$

and the lemma is proved.

In view of Lemma 1 the series

$$\sum_{m=1}^{\infty} \cos 2\pi \lambda m, \quad 0 < \lambda < 1, \tag{2}$$

is summable in the Abel sense, and it remains to find its generalized sum.

Lemma 2. The generalized sum of the series (2) is $-\frac{1}{2}$.

Proof. Let $0 < \theta < 2\pi$ and 0 < x < 1. It is convienent instead of (2) to consider the series

$$\frac{1}{2} + \sum_{m=1}^{\infty} \cos 2\pi \lambda m. \tag{3}$$

It is not difficult to see that

$$\frac{1-x^2}{1-2x\cos\theta+x^2} = 1 + 2\sum_{m=1}^{\infty} x^m \cos\theta m. \tag{4}$$

Really, multiplying the right-hand side of (4) by $1 - 2x \cos \theta + x^2$, we obtain

$$1 - 2x \cos \theta + x^{2} + 2 \sum_{m=1}^{\infty} x^{m} \cos \theta m$$
$$- 2 \sum_{m=1}^{\infty} x^{m+1} 2 \cos \theta m \cos \theta + 2 \sum_{m=1}^{\infty} x^{m+2} \cos \theta m.$$

Since

$$2\cos\theta m\cos\theta = \cos(m+1)\theta + \cos(m-1)\theta,$$

the last expression is equal to

$$1 - 2x\cos\theta + x^2 + 2x\cos\theta + 2\sum_{m=2}^{\infty} x^m \cos\theta m - 2\sum_{m=2}^{\infty} x^m \cos\theta m - 2x^2 - 2x^2 \sum_{m=1}^{\infty} x^m \cos m\theta + 2x^2 \sum_{m=1}^{\infty} x^m \cos m\theta = 1 - x^2.$$

Let $\theta = 2\pi\lambda$. Then taking a limit as $x \to 1 - 0$ in (4), we find that the generalized sum of (3) is 0.

Proof of Theorem 1. We will deduce Theorem 1 from Theorem A taking a limit as $\sigma \to \frac{1}{2} + 0$. First let λ be a noninteger. Then we have as $\sigma \to \frac{1}{2} + 0$

$$\begin{split} \widetilde{\zeta}(\lambda, 2\sigma - 1) &= \widetilde{\zeta}(\lambda, 0) + (2\sigma - 1)\widetilde{\zeta}'(\lambda, 0) + o(2\sigma - 1), \\ \Gamma(1 - \sigma + it) &= \Gamma(\sigma + it) - (2\sigma - 1)\Gamma'(\sigma + it) + o(2\sigma - 1). \end{split}$$

Moreover, it is well known that

$$\Gamma(2\sigma - 1) = \frac{1}{2\sigma - 1} - \gamma + B(2\sigma - 1).$$

Consequently, the right-hand side of the equality of Theorem A is

$$\frac{1}{2\sigma - 1} + \frac{2}{2\sigma - 1} \Re \widetilde{\zeta}_{\lambda}(0) - 2\gamma \widetilde{\zeta}_{\lambda}(0) + 2\Re \left(\widetilde{\zeta}'(\lambda, 0) - \widetilde{\zeta}(\lambda, 0) \frac{\Gamma'(\sigma + it)}{\Gamma(\sigma + it)} \right) - 2\Re \frac{1}{1 - \sigma + it} \left(e^{-2\pi i \lambda} \widetilde{\zeta}(\lambda, \sigma + it) - 1 \right) + Bt^{-1} + o(1)$$
(5)

as $\sigma \to \frac{1}{2} + 0$. By Lemmas 1 and 2 we have $\Re \widetilde{\zeta}(\lambda,0) = -\frac{1}{2}$. This and (5) prove the theorem.

When λ is an integer, then $\widetilde{\zeta}(\lambda, s) = \zeta(s)$ and the assertion of the theorem is obtained similarly using the equality $\zeta(0) = -\frac{1}{2}$.

Proof of Theorem 2. Let F(a, b; c; z) denote the hypergeometric function. In [2] it was obtained that, for $0 < \Re u < 1$, $0 < \Re v < 1$,

$$\int_{0}^{1} \widetilde{L}(\lambda, \alpha, u) \widetilde{L}(-\lambda, \alpha, v) d\alpha = \frac{1}{u + v - 1} + \Gamma(u + v - 1)$$

$$\times \left(\widetilde{\zeta}(\lambda, u + v - 1) \frac{\Gamma(1 - v)}{\Gamma(u)} + \widetilde{\zeta}(-\lambda, u + v - 1) \frac{\Gamma(1 - u)}{\Gamma(v)} \right)$$

$$- \frac{1}{1 - v} \left(e^{-2\pi i \lambda} \widetilde{\zeta}(\lambda, u) - 1 \right) - \frac{1}{1 - u} \left(e^{2\pi i \lambda} \widetilde{\zeta}(-\lambda, u) - 1 \right)$$

$$- \frac{u}{(2 - v)(1 - v)} \sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m}}{(m + 1)^{u + 1}} F\left(u + 1, 1; 3 - v; \frac{1}{m + 1} \right)$$

$$- \frac{v}{(2 - u)(1 - u)} \sum_{m=1}^{\infty} \frac{e^{2\pi i \lambda m}}{(m + 1)^{v + 1}} F\left(v + 1, 1; 3 - u; \frac{1}{m + 1} \right). \tag{6}$$

Since, for |z| < 1,

$$F(a, b; c; z) = (1 - z)^{c - a - b} F(c - a, c - b; c; z)$$

and $F(0,b;c;\frac{1}{m+1})=0$, we have that the series in (6) as $\sigma\to 1-0$ are equal to

$$-2\Re\frac{1}{it}\sum_{m=1}^{\infty}\frac{\mathrm{e}^{2\pi i\lambda m}}{m(m+1)^{1+it}}.$$

It is easily seen that the Fourier expansion of the function $\pi(1-2\lambda)$ is

$$\sum_{m=1}^{\infty} \frac{\sin 2\pi m \lambda}{m} \, .$$

Hence, by Lemma 1,

$$\pi(1-2\lambda)=2\Rerac{1}{i}\widetilde{\zeta}(\lambda,1).$$

Thus the theorem follows if we take $\sigma \to 1-0$ in Theorem A and in the equality (6).

References

- [1] A. Garunkštis, A. Kačėnas, A. Laurinčikas, *The Lerch zeta-function*, Vilniaus universitetas, Matematikos ir informatikos fakultetas (2000) (in Lithuanian).
- [2] A. Laurinčikas, The mean square of the Lerch zeta-function with respect to the parameter α , Nonlinear Analysis: Maodeling and Control (2000) (submitted).

Apie Lercho dzeta funkcijos kvadrato vidurkį parametro atžvilgiu

A. Laurinčikas

Gautos formulės Lercho dzeta funkcijos kvadrato vidurkiui parametro α atžvilgiu atvejais $\sigma=\frac{1}{2}$ ir $\sigma=1$.