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We examine unordered samples o := {py, ..., py}, w > 1, taken with replacement
from some set P of elements which have sizes belonging to the set of natural numbers.
Thus, p; € P = U;31P;, 1 € i < w, where P; is the set of elements having size j. We
assume that |P;| =: m(j) < oo and define the size of o as sum of the sizes of its elements.
From now on, following [11, [9], we call o a multiset. Suppose p(N) denotes the number
of multisets of size N, p(0) = 1. Ascribing the probability vy ({c}) = 1/p(N) for
each multiset of size NV, we obtain a finite probability space. Our interest now lays in the
probability of multisets with a fortiori given properties. In the present remark, to such
results obtained in the papers [1], [5], and [9] we add a lower estimate of the frequency
of random multisets which do not contain elements of sizes belonging to some set of
natural numbers. The similar problem for random permutations has been dealt with in
the author’s paper [6] which was further extended [8] for general labeled combinatorial
structures called assemblies. The multisets do not belong to this class.

Observe that o may also be understood as the formal symbolic product p; - - - Pw- So,
taking this point of view, we could reduce our problem to investigating of elements of an
additive arithmetical semigroup (see [3] or [5] for the definitions). In this way we could
later use the sieve ideas and technical details comming from the paper [2], nevertheless
we now have a shorter proof. The desired estimate for multisets will be derived directly
from an appropriate result for assemblies.

Let k;(o) be the multiplicities of elements of size j in o, havingsize N, 1< j < N

and L(k) := 1ky + --- + Nky for k = (ky, .. . kn) € Z+N. Thus L(k(0)) = N and

' .\ N (i L
vn(ki(o) = k;, lgjsN)zl(%f(:)T;&H( (J):_k, 1), "
j=1 j

where k; € Z*, 1 < j < N. Direct calculation (see [1]) shows that this frequency is also
equal to the probability

P(nj =k;, 1 <j < N|L(#) =N), )
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where n;, 1 < j < N, are independent negative binomial random variables defined on
some probability space by

P(n; = k) = (W(j) ‘;k - 1) (1 =29 @Dgik k>0, A3)

where 0 < z < 1. As we have shown in [6], such conditioning of independent events
substitutes well the typical argumentation in the small sieve approach.

Let J C {1,...,N} be arbitrary, maybe, depending on N subset, vy(J) :=
vn (kj(o) = 0 Vj € J). In other words, vy(J) is the frequency of the multisets which
does not have any element of size belonging to the set J. One can try to find the asymp-
totic behaviour of vy (J) as N — oo in terms of the sum

S(J) = 1/i.

j€J
By (1) we have

N

_ 1 m(4) +ki—1
w0 =g 2 ()

and the following formal identity

S = ] (1 - a0,

Thus analytic methods based on Cauchy’s theorem, such as Theorem 3 of [7], can be
applied to this problem. On this way, certain requirements on reqularity of J or some
bounds for the number of its elements are unavoidable. So, if S(J) is small enough,
we can get the estimate vn(J) < e~S5()), However there exist instances when such
relations take considerably’ different form. Consider the arithmetical semigroups as in
[4] (the multiset of monic polynomials over a finite field is a particular case) and take
J = (e7X N, N] with S(J) ~ K. Corollary 1 in [4] gives the following formula

o =eo{-1 (100 (55)) } (0 (57))

provided that K is large enough and N — oo. See [8] for more detailed comments. That
leads to the question:

What are bounds for v (J) in terms of S(J)?

Set un(K) = ming(s)ck vN(J), K > 0, where minimum is taken over all subsets
J satisfying the written condition.

Our purpose is to obtain a lower estimate of lim infy_,oc pun (K) =: p(K). Having
in mind the most popular examples of multisets and our intentions to exploit the results
of the paper [8], in what follows we assume
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Condition M. There exist fixed parameters q > 1,6 > 0 such that \; := 7(§)q™ > ¢/j
withc > 0and [N\; — 67| < p(4), 5 = 1, where p : Rt — Rt isa monotomcally
decreasing function with the properties

p(u) < Cu™t, p(u/2) € Cip(u), and Zp < Ca,
izl .

where C, Cy, Cs are positive constants.

In the sequel the constants in the symbol O(:) as well as the newly involved c;, C;
will depend on ¢, 6, ¢, C, C}, and C; only.

Theorem. For the class of multisets satisfying condition M, we have

H(K) > co exp{—e“K}

forallK >0

Proof. We use independent r.vs 7;, 1 < j < N, defined above by (3) with z = ¢g~1.
DenoteY = L(7), J = {1,...,N}\ J,

YJ=Zjnj, Y=Y-Y,.

JjeJ
From (1) and (2) it follows that

P(Y; = 0)P(Y; = N)
PY=N) @

vn(J)=PY,;=0Y =N)=

The probabilities appearing on the right hand side of (4) will be compared to that of
independent Poisson r.vs £, 1 < j < N, with parameters E¢; = ). Set as above
X = L(),

Xs=Y 36, Xr=X-X.
Jjed
Via relevant conditioning, interpreting Theorem 2 of [8] probabilistically, we have

Lemma. If Condition M is satisfied, then

Pn(J): = P(X;=0|X = N)
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Define
HzA) =[] ((1 - (zq*)f)"'("’e-*ﬂ"), ACN.
JEA

Expanding the logarithm of this function we observe that, for arbitrary A, H(z; A) is
analytic in |2| < /g and the Taylor coefficients of it are positive, the first of them beeing
one. Set hp = 1 and .

HzJ) =1+ hiz*.

k21
By Cauchy’s formula we obtain

p(?J=1\f)=H(1;J')“12—71r—i /exp{zkj(z"—l)}y%‘ﬁ_dz‘

lzi=1 " 4€J

N
=H(L;J)™'Y P (X;=N-k) > H1;J)7'P(X; = N). (6)
k=0

Moreover, we have
P(Y;=0)=H(1;J)"'P(X; =0). M

As it follows from Lemma 3 and formula (6) of the paper [8], if Condition M is satisfied,
then

e %7(1 +0(1))

P(X=N)= O

@®

as N — oo. Here v is the Euler constant and I" denotes the Euler function.
We now seek for an analogous relation for the probability P(Y = N). It is just the
N-th Taylor coefficient of the generating function

N . . N . .
H(l — g~ H (1- (zg~1))~"0)

j=1 j=1

or that of the function

N .

T10 -7y 0 -2 exp { S0 - /)= | B N) ©
j=1 i1

defined in |z| < 1. We now use the convolution argument.



On the frequency of multisets without some components 59

It is known that

l-29=7% <0+k—1)z ’

k20

(10)
f+k—1) k!
<+k ) RGO (1+O ), k=1

WV

Set

exp { > (N -0/5)7 } =14 r2°

j21 521

If Condition M holds, from Lemma 2 [8] we obtain that the last series is absolutely
convergent at the point z = 1 and |rs| = O(s™1!) for s > 1. The Taylor coefficients g;,
! > 0 of the analytic in |2| < ,/g function H(2; N) satisfy the estimate |g;| = O(a™"),
[>0,withsomel < a < /4, and go = 1. Hence for the m-th Taylor coefficient f,, of
the product of the last two functions in (9), we obtain

[fml < 3 Irsllgmosl = O(m™"), fo=1,

s=0

and also convergence of the series with the summands | f,,,|, m > 0. This suffices to show
that

k=0

Qn 3=i(0+’;_1)fN—k=%(;fm'*'o(l)) (11

as N — oo. We discuss only the more difficultcase 0 < § < 1.Let M > land0 < e < 1
be arbitrary fixed constants, M < eN. By virtue of (10) and the other observations above
we obtain

QN=( o+ D+ > o+ > )(0+’;_1)fN—k

0<kSM M<k<eN eN<kKN-M N-M<kgN

M
— c)(jv_+_60pv0—l_Fsl—OIvo—l }E:lf%|>

k2>2M

g (140 () ) (S +o( T )

Taking N — 00, M — o0, and € — 0 in the relevant order, we complete the proof of
(1.

Now, from (9) and (11) we derive the desired asymptotic formula

N

P(Y =N) = [[( - ¢79)"9Qu = H(l - ")"(’)N T(6) (ka + 0(1))

=1 =1 k>0
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I

N 9—
[Ia-ar0 T en{ ¥ 05 - D pama-+ow)
Jj=1 jz1

e (14 0(1))
= Tew )

Inserting the estimates (6), (7), and (12) into the expression (4), using (8) and relation (5)
in Lemma, we obtain

e?

-1
uw(J) > H(L; JUJ)~'P(X; = 0)P(X = N’(W) (1+0(1))
— H(1;N)"'Py(J)(1 +o(1)).

This by Lemma completes the proof of Theorem.
An analogue of the inequality in Theorem is also true for selections, e.g., the samples
o where no repetition of its elements is allowed.

References

[1] R. Arratia and S. Tavaré, Independent process approximations for random combinatorial structures, Adv.
Math., 104(1), 90-154 (1994).

[2] P. Erd6s and 1.Z. Ruzsa, On the small sieve. 1. Sifting by primes, J. Number Th., 12, 385-394 (1980).

[3] J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields, Lecture Notes in Pure Appl. Math., 50,
Marcel Dekker, New York (1979).

[4] E. Manstavi¢ius, Remarks on the semigroup elements free of large prime factors, Lith. Math. J., 32(4),
400409 (1992).

[5] E. Manstaviius, On analytic problems of combinatorial structures, in Trans. Lith. Math. Soc., III, 75-80
(1999).

[6] E. Manstavitius, On random permutations without cycles of some lengths, Periodica Math. Hung. (to appear,
2000).

[7] E. Manstavicius, Decomposable mappings on combinatorial structures. Analytic approach, Preprint 98-15,
Vilnius University, Department of Mathematics (1998).

[8] E. Manstaviius, On probability of combinatorial structures without some components, Preprint 2000-5,
Vilnius University, Department of Mathematics and Informatics (2000).

[9] D. Stark, Total variation asymptotics for independent process approximations of logarithmic multisets and
selections, Random Structures and Algorithms, 11(1), 51-80 (1997).

Kartotiniy aibiy be tam tikru komponenciu dazZnis
E. Manstavitius

Nagrinéjamos atsitiktinés didéjantios kartotinés aibés, neturinZios elementy, kuriy svoriai pri-
klauso tam tikram poaibiui. I§ apagios jvertintas tokiy kombinatoriniy struktiiry daZnis. Palyginami
salyginiai neigiamy binominiy atsitiktiniy dydZiy bei Poissono dydZiy skirstiniai.
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