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1. Notation and results
Let Q = Q4 be the four-dimensional torus
X = (z1,Z2,23,74), 0< T <1,

with coordinate-wise summation modulo 1 and with Lebesgue measure u. It is well
known that the endomorphisms of the torus (2 are defined by the non-singular matrices
V with integer elements by

Tx = xV(mod1).

An endomorphism T is ergodic if and only if its matrix V' has no eigenvalues equal
to one. Let @ = [a1, b1] X [ag, b2] be the rectangle of the Euclidean plane on which
two functions z = ;(z,y) and w = p,(z,y) are defined. In this case the vector
(z,9, p1(z,y), p2(z, y)) defines the surface I'in R%. Let

<P§':2‘P:'y2 - (‘Pz:y 2
T (oL o)

i 1= 1’ 21 (l)
i.e., K; is the Gaussian (total) curvature of components of the surface I'.

We suppose that the partial derivatives of the third order of functions ;(z,y) exist
when (z,y) € Q.

Theorem. Let the surface T’ = {(z,y, z,w), z = p1(z,y), w = p2(z,y), (z,y) € Q}
have the nonzeroes curvatures (1) of components, and let the assumption K, - K 2 0
holds. Moreover, the characteristic polynomial of the matrix V is irreducible over the
field of rational numbers with different real roots. Then for almost all points (z,y) € Q
with respect to the Lebesgue measure the set of vectors

{(:L‘, Y, ‘Pl(x7 y)v (P2(1?, y))V}a {(SL‘, Y, ‘Pl(x’ y)) ‘P2($’ y))Vz}’ v

is uniformly distributed on the unit cube [0, 1]* of the space R*.
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2. The main lemmas

We divide the proof of the theorem into lemmas, and in this part of the work we prove
only five lemmas.

We need the class of functions introduced by Korobov in 1989. Let Q, be the unit
cube in s-dimensional Euclidean space R®. A continuous on 2, function f(x) belongs to
the class E%(c) if it’s Fourier coefficients

Am,...m, = /f(x)e_ZWimxdxv

where my, .. ., m; are integers, satisfy the condition
c
|am ...m,l =
! (M ...1hs)e

witha > 1,¢ > 0, and

e = 1 if mg =0,
T el ifme £0,k=1,...,8

Lemma 1. Let €}, ...,e% be real numbers, N =1,2,.. ;6 =6y = lr?.aéleefvl -0,
X
N = oo, and o > 1. Furthermore, 01, 02, - . ., 0y are algebraic numbers linearly inde-

pendent over the field of rational numbers. Then for f € EZ(c) the following quadrature
Sformula

N
¥ (ke rebd.. (Hew+ k) = [109ax+0(FreNsT ).

Qa

holds, where € > 0 is an arbitrary fixed number, the constant in the symbol “O” depends
on o, €, s, and on arithmetic properties of numbers g1, . . ., 0s-

Proof. The assertion of the lemma is analoguous to that of Lemma 1 in [3], and follows
from the following assertions.

Theorem A (Korobov, 1989). Let f(z1,Z2,...,Ts) € EZ%(c), p > s, is a prime number,
and (a,,p)=1,v=1,2,...,s Then

o e =LA 580 i

where

(e <]

|Rp(f)| < Z’ 5p(a1m:1 +. - + azms) .

my...my=—00 (ml e m,)a
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Here 64(a) is defined by

1 ifa=0(modg),
8q(a) = {O ifa Z (mod gq).

The parallelepipedal net can be chosen in such manner that the inequality

IRo(1) = 0(£22)

should be satisfied, the constant in O depends only on o and s.

Theorem B (Schmidt, 1983). Let K be a real algebraic field. Then there exists a constant
ck such that for any real number o ¢ K there exist infinitely many numbers 8 € K for
which the inequality

o — B| < cx max ((1, o) Hx(8))

holds. Here Hy () is an absolute altitude of 3 in the field K.
Let us put

Opi 2 (Op; 2
Gi(z,9) = (57 ~o) +(55 —b)
Here a and b are real numbers.

Lemma 2. Let (zo,yo) be a fixed point, and we put
o i 0 )
a; = 5%(330, Yo) and b= %(mo,yo)-

Let the total curvature K; of the surface z; = ;(z,y), i = 1,2, satisfy the condition
| K| 2 xi > 0. If max(|z — zo|, |y — yo|) < 6i, then there exists a constant ¢; > 0 such
that

Gi(z,y) 2 ¢; min (jz — 0%, |y — wl?), i=1,2.

Proof. The functions %‘:7“ and %‘;—“ have bounded derivatives of the second order. We take
the Taylor series expansion of these functions

Op;
6‘; o+ (2 = 20) 20 0,10 + (u = o) 22 @(mo,yo)
+Bi (jz - -'coI2+|rB o|ly — on+Iy l?),
a 32 (3)
=b+(y— yo)ay2 (zo,30) + ay(fﬂo,yo)(-’lﬂ—-"':o)

+Biz2(Jx — zo|* + |z — -’L‘OHy Yol + |y — wol?),
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where B;; and Bjs, i = 1, 2, are bounded functions. From this we obtain

oum (G- (3 -
2

= <(%2f§i(xo¢,y0i))2 (gxa (zos, yOz))2> (x — z0s)2
23 Pi (a:o“ym)< L) (@ OuZIOz) o (:Eo,,yot)) (z — 70:) (¥ — Yoi)

+Bi3(|il7 — z0:|® + |z — 20i| 2|y — Yoi| + |7 — Toslly — voil® + Iy — voil),

where B;3, ¢ = 1,2 is bounded for (z,y) € D. Accordingto the conditions of the lemrﬁa
and relation (3) we get

_6290" 2 By i
—4 (( 520y (zoi, yot)) T 22 (zoi, in)W(xm, yo,))

= _4Ki2(1‘0i, Yoi) (1 + (a%(:g:’ym))z + (&p"(?;;’ in))2>4

2

< —4K*(zoi, yoi) < —4xi,
and
G; > max (|z — zoil?, |y — yoil?) (ciax? — Bialz — zos| + |y — voil),

where B;y = 3 max IBi3| andcy >0,i=1,2.
z,y€D

The last assertion proves the lemma.

Lemma 3. Let a; and b; be such that for (z,y) € Q,

Op; 2 (0pi L)
i =5 —a — b)) 2di>0 4

Gilz,9) = (% “)+(ay ) “
where d;, i = 1,2, are fixed constants. Then there exists a quadratic net with the lines
parallel to the coordinate axes, the sides of quadrates being of fixed lenght c;sd;, and for
(z, y) € H; N Q at least one of two assertions

>—£i—— or 3<p,

Op;

- —a; —bi| =
oz &

i
/2\/5

holds.
Proof. Since G;(x,y) > d2, for an arbitrary point (21i, y1:) € Q,

) i i di
(-0 25 [m-e>3
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or

’

because in (4) at least one summand is more than a half of the right side. We examine the
case

Opi d?
> —.
oz (zl)yl) I z \/5 (5)

We take the Taylor series expansion

B¢ _ 9pi 8%p; . 3 8%, ..
E dr (1:117sz) 61'2 (zil,yzl)(x .’L‘1)+ 0.7:3y(xﬂ’ yﬂ.)(y—yl)v

which is true for some £;,, ;. Therefore

Bien)~a| > |2 @) -

32%‘ A o 32% PO
—Ia—(xu,yu)(-’v —-I)+ m(wu,yu)(y - yl)l

0
> |52 (w4 8:) - a| — Bis max (12 -z, [y - 1a),

where

5= ms (|52 + |58 <

In view of (5), for (z,y) € Q and

d;
= zal, |y — vi1|) € —— = cird,,
max (|z — za, |y — yu) Bas = (6)
we get
3<p,~ di .
— -0 > —=, =12
B a,l 7 1=12

Let the point (z;1, ¥;1) be the center of a square having common side with the square (6).
Then similarly we get that, for (z,y) € D,

max (|z — Zial, [y — yi2|) < cird;.

Thus we get the net satisfying the assertion of the lemma.
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Lemma 4. Let 11(t),...,¥m(t) be m-times differentiable functions. Let a = (ay, ...,
am) denote a real nonzero vector, and in the interval [a, b] the Wronskian W [11, . . ., ¥m)
> 0. If the function g(t) = a191 + ... + am¥m is equal to zero for t = tq, then there
exist \y and \g such that |g(t)] = M|t — to|™ L for |t —to] < A2, \i > 0,i=1,2.

Proof. We put

M = min Wy, ...,¢%m]|

agtgh
We consider the linear system
m
Y ap®@®) =gM@), 0<k<m-1,
i=1

with respect to unknowns ay, . .., am,. When t € [a, b], the absolute value of the deter-
minant of this system is not smaller than M, and the solution of the system is expressed

by

(0 g((t)) Ym
I -
a; W1, ..., ¥m) SEPRRTE i , i=1,...,m.
(mD L gt g

Developing this determinant along the i-th column we get, for ¢ € [a, b],
c k
las| < —M—m?x|g( )(#)].
Since (ay ... anm) is nonzero vector, we can find [, 0 < ! < m — 1, such that
y M
|99 (to)| > — max|ai| = u > 0. @)

Let us have the Taylor series expansion for g(t)
t m
Z( )t )+——( 0 jom) 3, ®)

where £ is some point on [a, b]. Suppose that g’(to) # 0. Then by (8) we get
9() = (t — t0) (¢'(t0) + (¢ — to) B(1)),

where B(t) is bounded on [a, b]. Then, for |t — to| < |¢’(0)](2 max |B(t)]) !, we have

901> 5 e~ ol ©



74 G. Misevicius

If g'(to) = ... = g™ (to) = 0, g*+1) # 0, v < m — 2, we find from (8), for |t — to| <
|g®* V) (to)|b~2, that

W+ (10)||t — to]
Jo(n)] > Lol Rl (10)

The relations (9) and (10) complete the proof.
Corollary. The function g(t) has only finitely many zeros.

Lemma 5. Let 0 be a real root of the characteristic polynomial of the matrix V' = ||a;||,
and w = (w, ..., W) is the eigenvector corresponding to 0. If the polynomial is irredu-
cible over the field of rational numbers, then the relation

mw +...+msws =0
is posible ifallm;, i = 1,.. ., s, are equal to zero.

The components of the vector w verify the homogenous system of equations with
rank s — 1:

(au - 0)w1 +ajpwy + ...+ a;ws =0,
ajaw + (012 - 0)11)2 +...+aw; =0,
(11)
S ag1wy + asowz + ...+ (ass — O)ws = 0.
Let we put wy = 1 for some fixed k, 1 < k < s. Thus we get the system of order

s—1, and its determinant p, (6) has the same order s — 1 and is not equal to zero. We can
represent the solution of the last system in the form

_n() wn o < D=1 P (6) w. = Ps0)
PO U T T @ T T k(0 T T (8

Having in mind that w; = 1, we see that the relation
mw;+...+mew; =0

is equivalent to
mip1(0) + ...+ mepe(8) + ... + mgps(6) = 0.

Hence we get m; = 0 by reason that pi () is of order s — 1 when the different ones have
the order s — 2. Taking for k the values 1,2, .. ., s, we get the assertion of lemma.
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Tolygiis pasiskirstymai ant keturmacio toro
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Apibendrinami analogiski D. Moskvino rezultatai dvimaciams ir trimatiams torams. Straips-
nyje irodomi pagalbiniai rezultatai.



