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1. Introduction

Let a, be some increasing sequence of positive real numbers. With this sequence
we generate for each @ > 0 a sequence of natural numbers A(n, o). Examples are:
An, @) = [anal, [a2], [a®].

With some sequence of subsets of natural numbers S, Ss, ... let us define

A(a) = {n: A(n,a) € S,}.

We are interested on the conditions which imply that for almost all o > 0 the sets A(a)
are infinite. An interesting instance of this problem was investigated by G. Harman [1].
With S; = Sz = ... = P being the set of all prime numbers he proved that .A(c) are
infinite for almost all & > 0 if and only if the series

oo 1 1
;logan( ng.. 1)

lam —an|<1

diverges.
We shall consider the outlined problem with

Sp = {m: m =m, (mod M,)},

where 0 < m,, < M, are given natural numbers. Note, that the case of bounded M,, was
investigated in [3].

Theorem. Let a,, be a sequence of positive numbers, 0 < mp, < My, M,/a, — 0 as
n — oo. Let A(n,a) = [anc] and

A(a) = {n: A(n,a) = m, (mod My,)}.
If the series
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> i M

n=1

*Darba remia Lietuvos mokslo ir studijy fondas.
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converges, then A(a) is finite for almost all o > 0. If the series (1) diverges and

Qan
Mn < '&;a m<n An, An— ZM ) (2)

mgn

then A() is infinite for almost all o > 0.
For increasing sequence a,, the condition (2) may be replaced by

M, «

(3)
an—[An]

If a,, = q", then (3) is satisfied with M, Ing - n.

2. Proof of the theorem

Our main tool is the following proposition. The Lebesque measure on the real line is
denoted by A.

Lemma ([2], Lemma 6.1, p.171). Let J be a subinterval of the real line and Dy, be a
sequence of subsets of J. For each open interval I C J suppose that there is a sequence
of sets B, C Dy, NI such that

oo
> A(Bn) = +o0
n=1
and

2 -1
lim sup ( Y )\(B,,)) ( 3 ABaN Bm)) > oX(I), )
N—oo n<N m,nN
where 6 is a positive constant independent on I. Then almost all o € J belong to infinitely
many Dy,.
With the notation of our theorem we set

D, = {a: A(n,a) = m, (mod M,)}.

The condition @ € D, is equivalent then to the existence of some natural number s
satisfying

My + sM, < ana <m, +1+sM,, or
™M, M, mn+1 Mn
o € T+ s§— .

n an’ Gn an
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Then

Do=UJm ) S o) = [ 22l Tl M),

a Q a a.
s>0 n n n n

We fix now an interval I = (a,a + b),a,b > 0 and denote B, = D,, N I. The set B,, is
a union of some intervals J(n, s), two of them are shortened, if necessary, by taking the
lower (upper) range equal to a (a + b).

The number of intervals in the union is equal to the number of integers s, satisfying
a < (mn + sM,,)/an < a + bincreased by 1. Hence

ABr) = a%#{s:ags%{l—l--r-n—"<a+b}

1 b 1 b
+0 (;) = m +0 (;) = -]W_n(l +0(1)).
It follows now from the Borel-Cantelli lemma that the convergence of the series (1) imply
that A(limsup B,,) = 0, which means that for almost all & € I the sets .A(c) are finite.

This proves the first part of Theorem.
For the second part we need to prove (4) with B,, defined as above. Let

LIN)= ) MBNB)=> AB)+ Y. ABnB). (5)

1<k, IKN kSN 1<k<IKN

For the first sum we have

> AB) =MD +o(1) 3 5 AD =b, ©®

k<N k<N

To prove (4), we need an upper bound for L(N). It follows from (5) and (6) that it suffices
to prove that with some C > 0 independent of [

1\2
> ABnB)< CA(I)( > E) )
1<k<ISN mgN

holds. Consider now the summands on the left-hand side of (7). Let

By =U,*J(k,s), Bi=U?J(,¢),

where * indicates that the sums are taken over some appropriate subsets of s and ¢ and
two intervals in each union are, if necessary, shortened.
We fix some s and consider when

J(k,s) N J(1,t) # 2. 8)
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A sufficient condition for this is

M, M, 1. M
L L RNE AR . ©)
Qf ag aj ay ag ay

Both inequalities are also necessary for all ¢, except, probably for one case. The num-
ber of t satisfying (9) is bounded by a;/(axMx) + 1, hence, the number of non-empty
intersections in (8) is

p” M +0(1).

As a consequence we obtain

A(J(k, s) N By) = ( S

)

How large is the number of intervals By, consists of? For all these intervals except one the
inequality

m M,
a< —k+s-—£ <a-+b
ak ak

must hold. The number of intervals is then bounded by bay /Mj + O(1). We have now

(3 +ow) (i +(5)

b Mk MM, ale>)
= g (040 (i o +00))

/\(Bk n B[)

I

We use this result for ko < k <! — A;. Then M; < ai/ax, and

b AD
MM, ~ MM,

with the constant in < independent of I. For k < I notin therange ko < k <1 —A; we
use the trivial bound

ABrNB) « (10)

ABeNBy) < MB) < JTZZ (11

We are now ready to prove (7). Using the bounds (10) and (11) we have

> )\(BknBl)_E S ABNB)+ Z > BB

1<k <IN =1 k€lko,l— A,.] 1=1k¢[ko,l—An]
2
<b Y 37 +bZ(ko+Al)M <b Z )
1<k<l<N

The theorem is now proved.
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Sveikosios tam tikru seku dalys
V. Stakénas

Darbe nagrin¢jamos natiiraliujy skaitiy sekos [anal, &ia an — teigiamy realiyjy skaitiy skaiciy
seka o > 0. [rodytoje teoremoje tvirtinama, kad esant tam tikroms salygoms beveik visiems c > 0
skaitiai [anc] tenkina lyginius [a,a] = ma (mod Mn) be galo daug karty.



