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Introduction

In this note we consider a non-linear stochastic integral equation (SIE)
t t
Xo=g+ [ f0t)ds+ [ox)aBl,  0<i<T, W
0 0

where BH is a fractional Brownian motion (fBm) with the Hurst index 1 /2< H < 1.
It is known that almost all sample paths of fBm BH1/2 < H < 1, have bounded p-
variation for p > 1/H. Thus the integrals on the right side of (1) will exist pathwise as
the Riemann-Stieltjes integrals.

A solution of the stochastic integral equation (1), on a given filtered probability space
(Q, F,P,F) and with respect to the fixed fBm (B, F),1/2 < H < 1, and initial
condition &, is an adapted to the filtration F' continuous process X={X:0<t<T}
such that Xo = € ass., P(fot |£(Xs)|ds+]| f; 9(X,)dBH| < 00) =1 forevery 0 < t <
T, and its almost all sample paths satisfy (1).

For 0 < a < 1, Hy4o will denote the set of all C 1_functions g: R — R such that

'(z) — g’
sup |g'(z)| + su lg'(z) =g W < oo.
up g’ ()] SUP =
Denote by Wj([a, b)), 1 < p < 2, the class of all functions defined on [, b] with
bounded p-variation. Let CW p([a, b]) denote the subclass of W;([a, b]) of all continuous
functions.

Theorem. Let f be a Lipshitz functionand g € Hi4a,0<a <1l Forl<p<l+a
there exists a unique solution of the equation (1) with almost all sample paths in the
CW ([0, T1).

Existence and uniqueness of the solution

All facts mentioned bellow about the p-variation are taken from [1] and [6].



The existence and uniqueness of the solution of the integral equation 105

For p > 1, denote by v,(f; [a, b]) the p-variation of the function f on [a, b] and define
Vo(f; [a,b]) = v,,/ (f;[a, b]), which is a seminorm on Wj,([a, b]). Let Vp, o0 (£; [a, 8]) =

vp(f; [a,b]) + suPagogs ()] Then Vp,oo(f; [a, b]) is a norm and Wy((a, b]) equipped
with this norm is a Banach space.
Note that

Voo (£ [a,8]) € Vp,oo(fi [a, €]) + Vp,00(f; €, B]), ()

where a < ¢ < b. The rest inequality follows from the inequality
Vo(f: [0, 8]) < Vp(fi [a, ) + Vi(f; e, B]).- ©)

Let f € W,([a, b]) and h € Wp([a, b]) withp >0,¢>0,1/p+1/g>1.1f fandh
have no common discontinuities then the Riemann — Stieljes integral f: f dh exists and
the Love—Young inequality

( | staran x>) Voo 3 [0, B) Vil [0, B) @

holds, where Cy, 4 = {(p~! +g~!), {(s) denotes the Riemann zeta function, i.e., {(s) =
2n>l n=°.

Let f be a function on [0, T] and let A = {\n: m > 1} be a sequence of dyadic
partitions A, = {i127™: i = 0,..., ([T] + 1)2™} of [0,[T] + 1). For 0 < p < oo and
0<t<T,let

k

vp(fi Am) (t) = max{ Z |f(s5 At) = f(sima AB)|P:

=1

{0,([T)+1)2™} C {s5: 5 =0,...,k} CAm }

which is the p-variation over the finite set {i2~™ At: i =0,..., ([T] + 1)2™}.
Since \ is a sequence of nest:d partitions, the sequence vp(f;Am)(t), m > 1, is
non-decreasing foreach 0 < t < 7. For 0 <t < T, let :

vp(f)(t) = :_:1>Pl vp(f; Am)(8) = "}gnoo Vp(f; Am)(2)-

For a stochastic process Y = {Y(t): 0 <t < T}andeach 0 <t < T, vp(Y)(t, w) :=
v (Y (-,w))(t) is possibly unbounded but measurable function of w € . Let Y be a
cadlag process. If u,(Y)(T) < oo almost surely, then {vp(Y; [0, t]):0<t<T}isa
stochastic process indistinguishable from v,(Y'). Moreover, {v,(Y;(0,t]): 0 < ¢t < T}
is a cadlag stochastic process.

The proof of the Theorem 1 is similar to the proof in the case when an integral equ-
ation is driven by a deterministic function of bounded p-variation (see [2]-[4]). Here we
have to prove in addition that a solution is indeed adapted.
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The existence of a solution is proved using the Picard iteration method, i.e. we consi-
der the iteration

t t
XM= /0 F(X2)ds + /0 o(X?)dBE, n3>0, )

where X© = £. The integrals on the right side of (5) are clearly well defined for n = 0.
Moreover, the processes X! is continuous, F-adapted and vp(X')(T) < oo as. By
induction one can prove that for any n > 1 the process X™ has these properties.

First we will prove two lemmas. Define a sequence of stopping times

Tn = inf {t > Tp-1: Vp(BH; [Tn—l,t]) > '4—61,;;; min{l, L—l, (2|g/|oo)-l}}

1 : -1 ' -1 _
/\(Tn—1+za’; min {1, L , (219'|o0) }), n €N, 70 =0,

where L is the Lipshitz constant of the function £ in (5) and |g'|oo = sup, |9’ (z)].
Lemma 1. For anym,n € N the inequality
V(X1 [0, 7)) < 27 max {1, €1} [1 + [ (O)] +19(0)]] ©)
holds.
Proof. For any n and k, by the Love-Young inequality (4), we have
Vo (XY [re-1,74])

<V ( [ sexmas el + ([ otxmast [rk-ml)

< / " LFXD)| ds + CppVpao (9(X™): [ty 7)) Vi (B [74-1,74])

k—1

< [IFO)1+ L|X" (em)] + L - Vo (X7 vy ) (e = 7i-1)

+Cpp[219] o Vo (X [k, 7h]) + [9(0)] + 19| oo | X" (7))
xVp (B [Te—1,74])- ™

To prove (6) we use the inequality (7) for induction on k. First we estimate the quantity
V,(X™*1;[0,71]). Denote R := 2max{1, |£[}(1 + | £(0)| + |g(0)|). By the definition of
the stopping time 71 it is obvious that for all n > 0

Vo (X™*1500,m1]) < |£(0)] +|9(0)] + €] + % V,(X™;[0,71])

< (145404 57) (£ +lo@] + [¢)
+§}+—1 V, (X% 0, 71])
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2(1£0)] + |9 + [¢]) < R
Let
Vp (X™+ (-1, i) < < 2¢-1R, n>0.
Then by the inequality (7), we get

Vo (X741 [, 7))
< [1FO)1 + Copla@)1 + (L+ Cpil) (Vo (X [078]) +I¢])
L+ 2055l ].0) - Vo (X [re )

X max {Tk+1 — Tk, V, (BH‘ [Tk,Tk+1])}

<1FO) +1o0)] + & [221-1R+|e|]+ V(X7 (1 7s1))

by : |§|] < 2*R. @®)

<2[|(0)

Thus (3) and (8) imply theresult. O
For fixed m > 1, define a sequence of stopping times 0m = Ym A Tm A 0, Where

Om = m - 1{|¢] < m},
1
Ym = inf {t > Ym-1: VP(BH; [’ym_l,t]) > 8—6-,-7
p,p/a
- 1
X+ WL R (e ),
Ry =m-[L+£(0)] +9(0)]]-

Lemma 2. For fixed m, we have

Voo (X" = X1 [0, 0m])

<2 it O] om + 1o Vo(BT0,0m])].

Proof Denote Z™t! = X™t1 — X" n > 0. Note that for any k,n € N

‘/P;oo (Zﬂ-+1; [Uk—h O'k])
< 2V, (2™ = Z™ Y (0k-1); [ok-1,0k]) + |Z"* (ok-1))- )]

By the Love-Young inequality and Lemma 2 in [5], we have
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Vo (2™ — 27 (0k-1); [0k-1,0k])
< [ 1seen - pxh)ds
+CppaVp/aoo (9(X™) = g(X" V)i lok—1,0k]) Vo (BT [0k -1, 0%])

<L sup |Z}(ok—o0Ok-1)

Ok-1<8<0k

+C ,p/a{2|9| +|9| V(X Llok-1,0k])}
XVp.00 (27 [0k=1,0%]) - V; ( B lok=1,04]). (10)

It is obvious that

o0 (Z110,01)) < 2V3(2";10,01]) < 2|£(€)] - o1 +219(€)| - V(B [0, 0u])

and by (10), it follows that

1
Voo (Z2™F1[0,01]) < o Voo (Z2%10,01))

< Z[5(E)- o + 1o Vo(B7: 0,01

Denote A := | f(€)| - ok + 19(€)| - Vi (B¥; [0, 04]). Similarly, we have

Vp,c>o(Z"+1 zn+t Um—l) lom—laom])
< % (Zn+1 Z"+1(0'm_1) [Um. I;U'm] |Zn(0m-—l)‘

1

-2—— Vp,oo(Zl _ Zl(gm_l); [om-1, am]) + Z 5 Zn—'+1(0m—1)|
2

2—[|f (©](@m = om-1) + |o(6)| Vo (B"; [am_l,aml)]

+ Z 5 Z V o Zn —it1 Zn—i+l(0.j_l); [aj—la Jj])

i=1

24 < 24 2A
< — — —
\2,,1"*"2:2":{2”_I 2n1[1+n 'I,]
2n—z Z P14+ (n—i) + "'+(n_i)j_1]}

m-—1
24 2 .
<o {1+n+n + 2_221 [n+n®+- +n’]}

24
21‘1

2™ 2144+ 0™
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Then by (9) and (2), we have

m
Voo (275 [0mo1,0m]) € D Voo (ZF! = 274 (05-1); [0-1,95))
j=1
24 24 24 i, i1
< 5,;+2—nn—i-j=32—n2J [L+n+---+n7]
24 . _ —
<52 Mtn+-+nm1.

The proof of the lemma is complete. [J

Proof of Theorem. Existence of the solution. By Lemma 2, it follows that there exists
a stochastic process Y with almost all trajectories in CW,,([0,T]) such that for any
fixed k, Vp o0o(X™% — Y%;[0,T]) — 0 asn — oo since Vpoo(X™ — Y;[0,04]) =
Vp,oo (X™%% — Y%, [0, T)), where X{»°* = X™(t Aok), Y* = Y (¢t Aok).

The process Y7+ is F* = {F(t A 0%),0 < t < T}-adapted. We still have to show
that

t t
Yt=§+/0 f(Y,,)ds+/0 g(Y,)dB,” t € [0, 0. (1)

By the definition of the stopping times o, and Lemma 2 in [5], we have

Vo (¥ == [ 1005~ [ %85 10.04)
Vpool¥ = X75008) + Vo [ 1500) = 027 0,04

0
Vo ( [ o) - stxz-jas {o,akl)
< Voo (Y = X™; [0, ox)) + 2Lk sup |Ys - X;"1|

0<s<ok

+2kCpp/a (19|00 + 2k+1|g,|aﬁk] Voo (Y — X1 0, 04)).

The equality (11) follows from the above inequality.

Uniqueness of the solution. Let X be another adapted, continuous solutionof (11). By
the Love- Young inequality and defixitior of the stopping times (0 ), we have V}, oo (X —
Y;[0,01)) < 1 V;,00(X = Y;[0,01)). Thus X =Y on the interval [0, 01). Similarly, we
prove that Vp, 00(X — Y; [0k-1,0k]) = 0. Thus X =Y on [0,0m].

Since the sequence of stopping times (o,,) goes to infinity as m — oo then we have
existence and uniqueness of the solution of equation (1) on the interval [0, T).
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Integralinés lygties valdomos trupmeninio Brauno judesio sprendinio
egzistavimas ir vienatis

K. Kubilius

Nagrinékime trupmenini, Brauno judesi, kurio Hursto indeksas 1/2 < H < 1. Rastos salygos,
kada nagrinéjama lygtis turi vieninteli sp:endiny ir sprendinio trajektorijos yra tolydZiy, turindiy
baigting p-variacija, p > 1/H, funkeijy klaséje.



