On the boundary part spectrum of the discrete Schrödinger operator

Arvydas ASTRAUSKAS (MII)

e-mail: mathematica@ktl.mii.lt

1. Introduction

Let $\{V\}$ be a family of the ν -dimensional cubes in the ν -dimensional integer lattice \mathbb{Z}^{ν} , centered at $0 \in \mathbb{Z}^{\nu}$ increasing to \mathbb{Z}^{ν} , i.e., $V \uparrow \mathbb{Z}^{\nu}$. Let us consider the following Hamiltonian in $L^2(V)$:

$$H_V := \varkappa \Delta_V + \xi_V,\tag{1}$$

where Δ_V is the discrete Laplacian on V with zero Dirichlet boundary conditions (the restriction of the operator $\Delta\varphi(x):=\sum_{|y-x|=1}\varphi(y),\ x\in\mathbb{Z}^\nu$, to V); $|x|:=|x^1|+\dots+|x^\nu|;\ \xi_V:=\{\xi(x)\}_{x\in V}$ is a real function (a potential); \varkappa is a positive constant. Let $\lambda_1\geqslant\lambda_2\geqslant\ldots\geqslant\lambda_{|V|}$ be eigenvalues and $\psi_1(x),\psi_2(x),\ldots,\psi_{|V|}(x)\ (x\in V)$ the corresponding (normed) eigenfunctions of the operator (1); |V| stands for the number of points in V.

The purpose of the paper is to investigate the structure of the eigenpairs $\lambda_i, \psi_i(\cdot)$ for each $1 \le i \le K$ and each V, provided extreme values of the sample ξ_V possess a strongly pronounced geometric structure described by conditions (2)–(6) below; cf. also Theorem.

The main idea of investigation (related to the theory of "rare scatterers") is based on the cluster expansion method for resolvents. This method was particularly used in [4] to study the spectral properties of Hamiltonians on the whole of \mathbb{Z}^{ν} with an infinite sequence of (widely spaced) potential peaks. The physical analysis of the "rare scatterers" model was carried out in the monograph [5]. The main feature of the subject is that the interaction between potential peaks can be neglected and the eigenpairs associated with a block of potential peaks can be determined by the eigenpairs of the separate peaks.

To formulate the main result of the paper, let us introduce the following notation. Fix a constant L>0, and define the subset $\widetilde{\Pi}\subset V$ by $\widetilde{\Pi}=\widetilde{\Pi}(V,L):=\{x\in V:\xi(x)\geqslant L\}.$ Throughout we assume that $\widetilde{\Pi}\neq\varnothing$. Write $\widetilde{\xi}(x):=\xi(x)$ if $x\in V\setminus\widetilde{\Pi}$, and $\widetilde{\xi}(x):=0$ if $x\in\widetilde{\Pi}$. Let $r(\widetilde{\Pi}):=\min\left\{|x-y|:x\in\widetilde{\Pi},\ y\in\widetilde{\Pi},\ x\neq y\right\}$ if $|\widetilde{\Pi}|\geqslant 2$, and $r(\widetilde{\Pi}):=|V|^{1/\nu}$ if $|\widetilde{\Pi}|=1$. For any $u\in\widetilde{\Pi}$, let $\widetilde{\lambda}(u)$ be the maximal eigenvalue of the "single peak" Hamiltonian $h_V^{(u)}:=\varkappa\Delta_V+\widetilde{\xi}_V+\xi(u)\delta_u$, where $\delta_u:=\{\delta_u(x)\}_{x\in V}$ denotes the Kronecker symbol, i.e., $\delta_u(x):=1$ if x=u, and $\delta_u(x):=0$ if $x\neq u$. We note that

 $\lambda := \widetilde{\lambda}(u)$ is the maximal solution of the equation $g_{\lambda}(u, u) = 1/\xi(u)$, where $g_{\lambda}(\cdot, \cdot)$ stands for Green's function of the Hamiltonian $\varkappa \Delta_V + \widetilde{\xi}_V$.

For $\varrho > 0$, write $\Pi = \Pi(V, L, \varrho) := \{u \in \widetilde{\Pi} : \widetilde{\lambda}(u) \geqslant L + 2\nu\varkappa + \varrho\}$. If $\Pi \neq \emptyset$, let $\widetilde{\lambda}_1 \geqslant \widetilde{\lambda}_2 \geqslant \ldots \geqslant \widetilde{\lambda}_{|\Pi|}$ be the variational series of the sample $\widetilde{\lambda}(x)$, $x \in \Pi$, and write $\widetilde{\lambda}_{|\Pi|+1} := L + 2\nu\varkappa + \varrho$. Define $A(\lambda)$ by

$$A(\lambda) := \log \frac{\lambda - L}{2\nu \varkappa}$$
 for $\lambda \geqslant L + 2\nu \varkappa + \varrho$.

In the trivial case where $\widetilde{\Pi} = \Pi = \{\widetilde{z}\}\$ (i.e., H_V is the "single peak" Hamiltonian $H_V = \varkappa \Delta_V + \widetilde{\xi}_V + \xi(\widetilde{z})\delta_{\widetilde{z}}$), we have that $\lambda_1 = \widetilde{\lambda}_1$ and

$$|\psi_1(x)| \leqslant c_1(\varrho) \exp\left\{-A(\lambda_1)|x-\widetilde{z}|\right\}, \quad x \in V,$$

with $c_1(\varrho) := (2\nu\varkappa + \varrho)/\varrho$.

For $|\widetilde{\Pi}| \ge 2$, $K \in \mathbb{N} := \{1, 2, ...\}$ and $\delta > 0$, we introduce the following conditions on the sample ξ_V :

$$|\Pi| \geqslant K,\tag{2}$$

$$\min_{u \in V \setminus \Pi} \left(\widetilde{\lambda}_{K+1} - \xi(u) \right) \geqslant \frac{2\nu \varkappa^2}{\varrho},\tag{3}$$

$$16c_1(\varrho) \sum_{x \in V \setminus \{0\}} \exp\left\{-2(1-\delta)A(\widetilde{\lambda}_{K+1})|x|\right\} < 1, \tag{4}$$

$$\min_{1 \leq k \leq K} \left(\widetilde{\lambda}_k - \widetilde{\lambda}_{k+1} \right) \geqslant \exp \left\{ -\frac{\delta}{2} c_2(\varrho) r(\widetilde{\Pi}) \right\}$$
 (5)

and, finally,

$$r(\widetilde{\Pi}) \geqslant c_3(\varrho) \log \left| \widetilde{\Pi} \right| + c_4(\varrho)$$
 (6)

with $c_2(\varrho) := \log \frac{2\nu\varkappa + \varrho}{2\nu\varkappa}$, $c_3(\varrho) := \frac{2}{\delta c_2(\varrho)}$ and $c_4(\varrho) := c_3(\varrho)(2c_2(\varrho) + \log(24\nu c_1(\varrho)) + |\log\varkappa| + 4c_1(\varrho)/c_2(\varrho))$.

We now define the sites $\widetilde{z}_k \in \Pi$ by $\widetilde{\lambda}(\widetilde{z}_k) := \widetilde{\lambda}_k; 1 \leqslant k \leqslant K$.

Theorem. Fix V, and assume that ξ_V satisfies (2)–(6) with constants L>0, $1\leqslant K\leqslant |V|-1$, $\varrho>0$ and $0<\delta<1/2$ (which all may depend on V). Then for any $1\leqslant k\leqslant K$,

$$\left| \lambda_k - \widetilde{\lambda}_k \right| \leqslant \exp\left\{ -2(1 - \delta)A(\widetilde{\lambda}_k)r(\widetilde{\Pi}) \right\} \tag{7}$$

and

$$|\psi_k(x)| \le 4c_1(\varrho) \exp\left\{-(1-\vartheta)A(\lambda_k)|x-\widetilde{z}_k|\right\}, \quad x \in V.$$
 (8)

128 A. Astrauskas

REMARK 1. Assumptions (5) and (6) are to avoid the interaction among single high peaks of ξ_V in the model (1). Assumptions (3) and (4) ensure that the interaction between a single peak and a multiple (double, triple, etc.) one is negligible.

REMARK 2. Let $\xi(x), x \in \mathbb{Z}^{\nu}$, be independent identically distributed random variables (a random potential) with a common distribution function $F(t) = P(\xi(0) \leqslant t), -\infty < t < \infty$. Let $f(s), s \geqslant 0$, stand for the inverse function of $\log(1 - F(\cdot))$. Assume that there exists a distribution density $p(\cdot) := F'(\cdot) \leqslant \text{const}$ and that $f(s) - f(s\delta) \to \infty$, as $s \to \infty$ for each $0 < \delta < 1$. Fix constants $0 < \varepsilon' < \varepsilon < 1/2$. Then, with probability $1, \xi_V$ satisfies conditions (2)–(6) with $L = L_{V,\varepsilon} := f((1 - \varepsilon) \log |V|), \ \varrho = \varrho_{V,\varepsilon,\varepsilon'} := L_{V,\varepsilon'} - L_{V,\varepsilon}$ and $K = K_V := \frac{1}{2} |V|^{\varepsilon'}$, for each $0 < \delta < 1/2$ and for each V large enough. See [1] for the proofs.

REMARK 3. A detailed analysis of the boundary part spectrum for the deterministic (random as well) Hamiltonian $H_V(1)$ under various conditions on ξ_V is carried out in our forthcoming paper [2] (which includes Theorem of the present article). See also an announcement [3] on the results of [2].

2. Proof of Theorem

We shall treat the case $K \ge 2$. If K = 1, the proof is similar.

Let $G_{\lambda}^{(z)}(x,y), \ g_{\lambda}(x,y)$ and $g_{\lambda}^{(z)}(x,y)$ $(x\in V,y\in V)$ be Green's functions of the Hamiltonians $H_{V}^{(z)}:=\varkappa\Delta_{V}+(1-\delta_{z})\xi_{V}, \ h_{V}:=\varkappa\Delta_{V}+\widetilde{\xi}_{V}$ and $h_{V}^{(z)}:=h_{V}+\xi(z)\delta_{z}$. Write $\tau:=\exp\left\{-\frac{\delta}{2}c_{2}(\varrho)r(\widetilde{\Pi})\right\}$ and $\lambda_{0}:=\widetilde{\lambda}_{K}-\tau/3$. For fixed $z\in\widetilde{\Pi}$, we introduce the following (close) subset $\Lambda(z)\subset[\lambda_{0},\infty)$ by

$$\Lambda(z) := \left\{ \lambda \geqslant \lambda_0 : \min_{u \in \widetilde{\Pi} \setminus \{z\}} \left| \frac{1}{\xi(u)} - g_{\lambda}(u, u) \right| \lambda^2 \geqslant \frac{2(\lambda - L)^2 \left| \widetilde{\Pi} \right|}{\lambda - L - 2\nu \varkappa} e^{-\delta A(\lambda) r(\widetilde{\Pi})} \right\} . (9)$$

Note that for each $\lambda \in \Lambda(z)$, Green's functions $g_{\lambda}(\cdot, \cdot)$ and $g_{\lambda}^{(u)}(\cdot, \cdot)$, $u \in \widetilde{\Pi} \setminus \{z\}$, exist and, moreover,

$$|g_{\lambda}(x,u)| \leqslant \frac{(\lambda - L)^{2}}{\lambda(\lambda - L - 2\nu\varkappa)(\lambda - \widetilde{\xi}(x))} e^{-A(\lambda)|x - u|},$$

$$|g_{\lambda}^{(u)}(x,u)| = \left| \frac{g_{\lambda}(x,u)}{1 - \xi(u)g_{\lambda}(u,u)} \right|, \quad x \in V,$$
(10)

by expanding $g_{\lambda}(\cdot,\cdot)$ over $\varkappa\Delta_{V}$ as in [2] and taking into account the resolvent identity $g_{\lambda}^{(u)}(x,u)=g_{\lambda}(x,u)+g_{\lambda}^{(u)}(x,u)\xi(u)g_{\lambda}(u,u), x\in V, u\in\widetilde{\Pi}\setminus\{z\}.$

Lemma 1. (i) For each $\lambda \in \Lambda(z)$, Green's function $G_{\lambda}^{(z)}(\cdot\,,\cdot\,)$ exists and, moreover,

$$\left| G_{\lambda}^{(z)}(x,z) \right| \leqslant \frac{2(\lambda - L)}{\lambda(\lambda - L - 2\nu \varkappa)} e^{-(1-\delta)A(\lambda)|x-z|}, \quad x \in V, \tag{11}$$

and

$$\left| G_{\lambda}^{(z)}(z,z) - g_{\lambda}(z,z) \right| \leqslant \frac{(\lambda - L)^2}{\lambda^2 (\lambda - L - 2\nu\varkappa)} e^{-(2-\delta)A(\lambda)r(\widetilde{\Pi})}. \tag{12}$$

(ii) $\lambda \in \Lambda(z)$ is an eigenvalue of H_V if and only if λ is a solution of the equation

$$G_{\lambda}^{(z)}(z,z) = \frac{1}{\xi(z)}.\tag{13}$$

In this case, the corresponding (normed) eigenfunction has the form

$$\psi(x) = G_{\lambda}^{(z)}(x, z) \left(\sum_{y \in V} \left(G_{\lambda}^{(z)}(y, z) \right)^2 \right)^{-1/2}, \quad x \in V.$$
 (14)

Proof. (i) Fix $y \in V$ and $\lambda \in \Lambda(z)$, and consider the equation

$$\left(\lambda - H_V^{(z)}\right)\omega(\cdot) = \sum_{u \in \widetilde{\Pi} \setminus \{z\}} \delta_u(\cdot)\xi(u)g_\lambda(u,y). \tag{15}$$

Applying the resolvent operator $g_{\lambda} := (\lambda - h_V)^{-1}$ to the both sides of (15), we rewrite (15) in the following form:

$$\omega(\cdot\,) - \sum_{u \in \widetilde{\Pi} \setminus \{z\}} g_{\lambda}(\cdot\,,u) \xi(u) \omega(u) = \sum_{u \in \widetilde{\Pi} \setminus \{z\}} g_{\lambda}(\cdot\,,u) \xi(u) g_{\lambda}(u,y).$$

Since $\lambda \in \Lambda(z)$, Gerzhgorin's theorem implies that this equation has an unique solution $\omega(\cdot)$. Now, applying the operator $\lambda - H_V^{(z)}$ to $q(\cdot) := g_\lambda(\cdot, y) + \omega(\cdot)$, we get that $q(\cdot) \equiv G_\lambda^{(z)}(\cdot, y)$. Since y is chosen arbitrarily, this implies that $\lambda \notin \operatorname{Spect}(H_V^{(z)})$.

Estimates (11) and (12) follow by applying (10) to the following cluster expansion for $G_{\lambda}^{(z)}(\cdot,z)$:

Lemma 2 [2]. For all $x \in V$, all $y \in V$,

$$G_{\lambda}^{(z)}(x,y) = g_{\lambda}(x,y)$$

$$+ \sum_{k \geqslant 1} \sum_{\Gamma: u_{1} \to u_{2} \to \cdots \to u_{k}} g_{\lambda}^{(u_{1})}(x,u_{1}) \xi(u_{1}) \left(\prod_{l=2}^{k} g_{\lambda}^{(u_{l})}(u_{l-1},u_{l}) \xi(u_{l}) \right) g_{\lambda}(u_{k},y);$$

here the sum \sum_{Γ} is taken over non-stopping paths $\Gamma: u_1 \to u_2 \to \cdots \to u_k$ of the length k-1 which are constrained to lie in $\widetilde{\Pi} \setminus \{z\}$.

(ii) Let $\lambda \in \Lambda(z)$ satisfy the equation $H_V \psi(\cdot) = \lambda \psi(\cdot)$ for some $\psi(\cdot) \not\equiv 0$. Rewrite the equation in the form $(\lambda - H_V^{(z)})\psi(\cdot) = \xi(z)\psi(z)\delta_z(\cdot)$ and then apply the resolvent operator $G_\lambda^{(z)} := (\lambda - H_V^{(z)})^{-1}$. We easily obtain from this that λ satisfies (13) and $\psi(\cdot)$ has the form (14). The converse follows by the same arguments.

Introduce the following intervals: $I := [\lambda_0, \infty)$, $I_k := [\widetilde{\lambda}_k - \tau/3, \widetilde{\lambda}_k + \tau/3]$. Clearly $I_k \subset I$ and $I_k \cap I_l = \emptyset$ for $1 \le k < l \le K$, according to (5) and the definitions.

Lemma 3. Under the conditions (2)-(6),

(i) $I_k \subset \Lambda(\widetilde{z}_k)$ for each $1 \leq k \leq K$,

(ii)
$$I \setminus \bigcup_{k=1}^K I_k \subset \bigcap_{k=1}^K \Lambda(\widetilde{z}_k)$$
,

and, finally,

(iii) for fixed $1 \leq k \leq K$, if $\lambda \in \Lambda(\tilde{z}_k)$ satisfies the equation (13), then

$$\left|\lambda - \widetilde{\lambda}_k\right| \leqslant \exp\{-2(1-\delta)A(\widetilde{\lambda}_k)r(\widetilde{\Pi})\}$$

and, consequently, $\lambda \in I_k$.

Proof. (i)–(ii) In view of (6), the right-hand side of inequality in (9) does not exceed $\tau/6$ for all $\lambda \geqslant \lambda_0$. Let us consider the minimum in (9). First, according to the definition of $\widetilde{\lambda}(u)$ and (6), for each $\lambda \geqslant \lambda_0$ and each $u \in \Pi$,

$$\left|\frac{1}{\xi(u)} - g_{\lambda}(u, u)\right| \lambda^{2} = \left|g_{\tilde{\lambda}(u)}(u, u) - g_{\lambda}(u, u)\right| \lambda^{2}$$

$$\geqslant \begin{cases} |\lambda - \tilde{\lambda}(u)|/2, & \text{if } \lambda \geqslant \tilde{\lambda}(u)/2, \\ \lambda/2, & \text{otherwise.} \end{cases}$$

Second, by expanding g_{λ} over $\kappa \Delta_V$, we obtain from (3) and (6) that for each $\lambda \geqslant \lambda_0$ and each $u \in \widetilde{\Pi} \backslash \Pi$,

$$\left(\frac{1}{\xi(u)} - g_{\lambda}(u, u)\right) \lambda^2 \geqslant \frac{1}{g_{\lambda}(u, u)} - \xi(u) \geqslant \tau.$$

Summarizing these estimates, we arrive at the claimed assertions.

(iii) We now fix $z := z_k$ and $\lambda \in \Lambda(z)$ satisfying the conditions of Lemma 3(iii). By (13) and the definition of $\tilde{\lambda}(z)$,

$$\begin{aligned}
\left|G_{\lambda}^{(z)}(z,z) - g_{\lambda}(z,z)\right| &= \left|g_{\tilde{\lambda}(z)}(z,z) - g_{\lambda}(z,z)\right| \\
&\geqslant \begin{cases}
\frac{1}{2} \left|\tilde{\lambda}(z) - \lambda\right| \lambda^{-2}, & \text{if } \lambda \geqslant \frac{1}{2}\tilde{\lambda}(z), \\
\frac{1}{2}\lambda^{-1}, & \text{otherwise.}
\end{aligned} \tag{16}$$

On the other hand, we have from (12) that the left-hand side of (16) does not exceed $2\nu\varkappa c_1(\varrho)\lambda^{-2}\exp\{-A(\lambda)((2-\delta)r(\widetilde{\Pi})-1)\}$. From these estimates combined with (6), it follows the claimed assertions of (iii).

We now finish the proof of Theorem by using Lemmas 1 and 3. If $\lambda \in I \setminus \bigcup_{k=1}^K I_k$, then a combination of Lemma 3(ii)–(iii) and Lemma 1(ii) shows that $\lambda \notin \operatorname{Spect}(H_V)$.

For $1 \le k \le K$, we learn from the estimation (12) and condition (6) that there exists in $I_k \subset \Lambda(\widetilde{z}_k)$ a solution of (13) with $z := \widetilde{z}_k$ which we denote by λ_k . Now, again by Lemmas 1(ii) and 3(iii), we obtain the estimate (7) for λ_k , and by Lemma 1(i), we obtain the estimate (8) for $\psi_k(\cdot)$ (14), as claimed. Finally, the uniqueness of the solution λ_k in I_k is readily shown by applying (11) and (4) to the resolvent identity:

$$G_{\lambda}^{(z)}(z,z) - G_{\lambda'}^{(z)}(z,z) = (\lambda' - \lambda) \sum_{x \in V} G_{\lambda'}^{(z)}(x,z) G_{\lambda}^{(z)}(x,z) \quad \text{with} \quad z := \widetilde{z}_k,$$

where $\lambda, \lambda' \in I_k$ satisfy (13) with $z := \tilde{z}_k$. Theorem is proven.

References

- [1] A. Astrauskas, On high-level exceedances of i.i.d. random fields, to appear in Statist. and Probab. Letters (2000).
- [2] A. Astrauskas, Extremal theory for spectrum of the random (discrete) Schrödinger operator, in preparation (2000).
- [3] A. Astrauskas, S.A. Molchanov, Limit theorems for the ground states in the Anderson model, Funct. Anal. Appl., 26(4), 92-95 (1992) (in Russian).
- [4] A.G. Golytsina, S.A. Molchanov, Multidimensional model of rare random scatterers, Dokl. Acad. Nauk SSSR, 294, 1302-1306 (1987) (in Russian).
- [5] I.M. Lifshitz, S.A. Gredeskul, L.A. Pastur, Introduction to the theory of disordered systems, Moscow, Nauka (1982) (in Russian).

Apie diskrečiojo Šriodingerio operatoriaus viršutinį spektrą

A. Astrauskas

Nagrinėjama diskrečiojo Šriodingerio operatoriaus baigtinėse srityse ekstremaliųjų tikrinių reikšmių struktūra ekstremaliai retų potencialo pikų atveju. Naudojamas rezolvenčių skleidimo klasteriais metodas.