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1. Introduction

Let {V} be a family of the v-dimensional cubes in the v-dimensional integer lattice
Z¥, centered at 0 € ZY increasing to Z*, i.e.,, V T Z". Let us consider the following
Hamiltonian in L2(V):

Hy = xAy + &v, ¢Y)

where Ay is the discrete Laplacian on V with zero Dirichlet boundary conditions (the
restriction of the operator Ap(z) = Y|, =1 P(¥), T € Z7,to V); |z| := |z| +

A |zv; &v = {€(x)}zev is a real function (a potential); x is a positive constant.
Let \; > A2 > ... = \v| be eigenvalues and 91 (z), ¥2(z), ..., Yv|(z) (z € V) the
corresponding (normed) eigenfunctions of the operator (1); |V| stands for the number of
pointsin V.

The purpose of the paper is to investigate the structure of the eigenpairs \;, (- )
for each 1 €< 7 < K and each V, provided extreme values of the sample £y, possess a
strongly pronounced geometric structure described by conditions (2)—(6) below; cf. also
Theorem.

The main idea of investigation (related to the theory of “rare scatterers™) is based
on the cluster expansion method for resolvents. This method was particularly used in
[4] to study the spectral properties of Hamiltonians on the whole of Z” with an infinite
sequence of (widely spaced) potential peaks. The physical analysis of the “rare scatterers”
model was carried out in the monograph [5]. The main feature of the subject is that the
interaction between potential peaks can be neglected and the eigenpairs associated with
a block of potential peaks can be determined by the eigenpairs of the separate peaks.

To formulate the main result of the paper, let us introduce the following notation. Fix a
constant L > 0, and define the subset II C V by o= H(V L):={z € V. g ) > L}
Throughout we assume that I # @. Write 5( z) = §{(z) ifz € V\H and §( )

if z € I Let r(II) := min{la: y|:zell,yell,z # y} if [TT| > 2, and r(iI) :=
|V|1/ vif |1'I| 1. For any u € I, let )\( ) be the maximal eigenvalue of the “single

peak” Hamiltonian hv = %Ay + {v + £(u)by, where 8, := {6,(z)}scv denotes the
Kronecker symbol, i.e., 8,(z) := 1if 2 = u, and 6,(z) := 0 if z % u. We note that
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= A(u) is the maximal solution of the equation gx(u,u) = 1/£(u), where ga(-,-)
stands for Green’s function of the Hamiltonian zAV + E~V

For o > 0, write II = IV,L,p) :={u € o: /\(u) L+2us+ o} 11 # &,
let )\1 > )\2 L2 )‘ll'll be the variational series of the sample )\(z) z € II, and write
XIHI+1 =L+ 2vx+ o. Define A(A) by

AN :=log)\_L for A\> L+ 2ux+o.
: 2ux

In the trivial case where I=0-= {Z} Gie.,  Hy is the “single peak” Hamiltonian
= xAy + €V + &(2)6z), we have that Ay = 1 and

[1(z)| < er(o) exp {—A(M1) |z —2]}, z €V,

with ¢ () := (2vsc+ 0)/0.
For |1'I| >2,KeN:={1,2,...}and § > 0, we introduce the following conditions
on the sample {y:

I > K, )
. < 2u3c?
i ()\K+l - £(u)) > )
16ei(e) Y exp{-2(1- 5)A(XK+1)|z|} <1, - @)
zeV\{0}

min (Xk — Xk 1) > exp —écz(g)r(ﬁ) 5)

1<k<K )z 3

and, finally,

r(fD) > ca(e)log [TT] +ca(e) ©®

with c5(p) = log 22242, c3(p) := gzZ5y and ca(e) = ca(0)(2¢2(e) +log(24vei (o)) +
[log »¢| + 4c1(0)/c2(0))-
We now define the sites z; € II by )\(zk) = 1<k < K.

Theorem. Fix V, and assume that £y satisfies (2)~(6) with constants L > 0,1 < K £
|V|—1, 0> 0and0 < & < 1/2(which all may depend on V'). Then forany1 < k < K,

l)\k - Xkl < exp {—2(1 - 6)A(Xk)’l‘(ﬁ)} )
and

k()| < 4er(o) exp {=(1 = §)AN) |z — %[}, =€V ®)
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REMARK 1. Assumptions (5) and (6) are to avoid the interaction among single high
peaks of £y in the model (1). Assumptions (3)and (4) ensure that the interaction between
a single peak and a multiple (double, triple, etc.) one is negligible.

REMARK 2. Let £(z), z € ZY, be independent identically distributed random variables
(a random potential) with a common distribution function F(t) = P(£(0) < t), —oo <
t < oo. Let f(s), s > 0, stand for the inverse function of log(1 — F(- )). Assume that
there exists a distribution density p(-) := F'(-) < const and that f(s) — f(s6) — oo,
as s — oo for each 0 < § < 1. Fix constants 0 < €’ < € < 1/2. Then, with probability
1, €y satisfies conditions (2)—(6) with Q = Ly, := f(1 —€)log|V]), 0 = gv,e,‘el =
Lye — Ly and K = Ky := }|V|", for each 0 < 6 < 1/2 and for each V large
enough. See [1] for the proofs.

REMARK 3. A detailed analysis of the boundary part spectrum for the deterministic (ran-
dom as well) Hamiltonian Hy (1) under various conditions on &y is carried out in our
forthcoming paper [2] (which includes Theorem of the present article). See also an an-
nouncement [3] on the results of [2].

2. Proof of Theorem

We shall treat the case K > 2. If K = 1, the proof is similar.

Let G(z, y) ga(z,y) and g0 (z,9) (z € V,y € V) be Green’s functions of the
Hamiltonians Hv = Ay + (1 —86,)¢v, hy := %Ay +§v and hg‘) = hy +£(2)6;.
Write 7 := exp {—%cz(g)r(fl)} and Ao := Ag — 7/3. For fixed z € I, we introduce
the following (close) subset A(z) C [Ay,00) by

0=

— 1 g—sapr(i)
/\ L —2us )

oo

A(z):=¢A2Xo: min
uell\{z}

Note that for each A € A(z), Green’s functions g (-, - ) and g(“)( ,+ ), u € TI\{z}, exist
and, moreover,

(A—L)* e~ AN)z—u|
MO —L - 209 (A—£(@)) !

(u) _ a\x,u
9x (x’u)l - ’1—5 u)ga(u, u

lga(z, u)| <
(10)

b%' t):xpandmg ga(-,-) over ;tAv as in [2] and taking into account the resolvent identity
g5 (z,u) = gz, u) +g)‘ (z,u)é(wgar(u,u),z e V,u e H\{z}
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Lemma 1. (i) For each A € A(z), Green’s function Gf\‘ )(. ,+ ) exists and, moreover,

(2) 20-L) -a- ~5)ANs—2]
68z, 2)| < YO—L —2vm) zeV, an
and
. X—L)2 o (T
lG( )(z, z) oz, 2 ‘ < ,\( . )21/%) (2-8)A(N)r(IT) (12)

(ii) X € A(2) is an eigenvalue of Hy if and only if X is a solution of the equation

1 :
G (2,2) = —. (13
A ( ) 5( z) )
In this case, the corresponding (normed) eigenfunction has the form
2 -1/2
v =60 (X (Pwa)') . zev 1
yev
Proof. (i) Fix y € V and XA € A(z), and consider the equation
(-EP)w()= Y G )E@arw): (1)
uell\{z}

-

Applying the resolvent operator gy := (A — hv') ™! to the both sides of (15), we rewrite
(15) in the following form:

W)= T et wiue) = Y o, 0w Y).

ueﬁ\{z} ueM\{z}

Since A € A(z) Gerzhgorin’s theorem implies that this equation has an unique solution
w(-). Now, applying the operator A — Hy; (2) 10 q(-) := ga(-,y) + w(-), we get that
q(-) = G(;’(- ,y). Since y is chosen arbitrarily, this implies that A ¢ Spect (H {,’ )).
( l)':‘stimatcs (11) and (12) follow by applying (10) to the following cluster expansion for
Gz\z ( ) z):

Lemma 2 [2]. Forallz €V, ally <V,

G (z,y) = gx(z,v)
k
TS D SRR CIERON] § ) CILO0) PCH:

k21 Tiug—ug—--—>uk =2

here the sum Y_r is taken over non-stopping paths T : uy — ug — -+ — uy of the
length k — 1 which are constrained to lie in T\ {z}.
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(ii) Let A € A(2) satisfy the equatlon Hyy(+) = Mp(-) for some 9(-) # 0. Rewrite
the equation in the form (A — HV YW(-) = &(2)¥(2)6;(-) and then apply the resolvent

operator Gf\ 2 = (AN-H (’)) 1, We easily obtain from this that ) satisfies (13) and (- )
has the form (14). The converse follows by the same arguments.

Introduce the following intervals: I := [Ag, 00), I := e —7/ 3, A + 7/3]. Clearly
Iy cIand I NI, = @ for1 < k <! < K, according to (5) and the definitions.

Lemma 3. Under the conditions (2)—(6),
() I C A(Zx) foreach1 <k < K,
.. K K
(i) I\ kL=Jl I, C kgl A(Z),
and, finally,
(iii) for fixed 1 < k < K, if X € A(Zy) satisfies the equation (13), then

A= Xe| < exp{-2(1 - ) A(w)r(ID)}
and, consequently, X € Ij.
Proof. (i)—(ii) In view of (6), the right-hand side of inequality in (9) does not exceed 7/6

for all A > )Ao. Let us consider the minimum in (9). First, according to the definition of
A(u) and (6), for each A > Xo and each u € II,

= |gi(u)(u’ u) - gA(uv u) A
{|,\ Xw)|/2, if A= X(u)/2,

A/2, . otherwise.

‘E(lu—) — galu, u)| A

Second, by expanding gx over »#Avy, we obtain from (3) and (6) that for each A > Ao
and each u € II\I],

(z(lu—) —gx(u,u)) 3>

Summarizing these estimates, we arrive at the claimed assertions.
(iii) We now fix z := zx and A € A(2) satisfying the conditions of Lemma 3(iii). By
(13) and the definition of A(2),

GP(2,2) - 9r(2,2)| = |93 (2 2) — r(2,2)|

>{§ )\‘)\ 2, if A > 1X(2),
L\-1, otherwise.

(16)

On the other hand, we have from (12) that the left-hand side of (16) does not exceed

2ucci(@)A "2 exp{—A(N)((2 - §)r(I) — 1}. From these estimates combined with (6),
it follows the claimed assertions of (iii).
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We now finish the proof of Theorem by using Lemmas 1 and 3. If A € I\ Uk, I,
then a combination of Lemma 3(ii)—(iii) and Lemma 1(ii) shows that A & Spect (Hy').

For 1 < k < K, we learn from the estimation (12) and condition (6) that there exists
in I, C A(Zx) a solution of (13) with z := 2, which we denote by Ax. Now, again by
Lemmas 1(ii) and 3(iii), we obtain the estimate (7) for A, and by Lemma 1(i), we obtain
the estimate (8) for (- ) (14), as claimed. Finally, the uniqueness of the solution Ak in
I is readily shown by applying (11) and (4) to the resolvent identity:

Gg‘z)(z, 2) =GB (z,2) = (N =) Z Gz, z)Gf\z) (x,2) with z:= 7%,
zeV .

where A, )’ € I}, satisfy (13) with z := Zi. Theorem is proven.
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Apie diskretiojo Sriodingerio operatoriaus virSutini spektra
A. Astrauskas

Nagrinéjama diskretiojo Sriodingerio operatoriaus baigtinése srityse ekstremaliyjy tikriniy
reik§miy struktiira ekstremaliai rety potencialo piku atveju. Naudojamas rezolventiy skleidimo
klasteriais metodas. '



