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1. Statement of the problem
We consider the equation
Lu:=u,;, +Lu=0 €))

in the cylinder Qr = {(z,2) : z € Br, 0 < z < H},where B ={z : |z| < R} C
R™. The operator L in (1) is defined by the formula

n

Lou= Y aij(@)uz, + |27 ) zibi(@)uz, +c(z)u.

ij=1 i=1

We assume that the following conditions are fulfilled:

(i) ai; € C+*(Bg), both b; and c € Cot*(Bg) with0 < a < 1fori,j =1,n;

(ii) there exists a number y > 0, and continuous functions x; and p2 such that 0 <
p1(z]) < pa(|z|) for each |z| € (0, R}, p2(|z]) = O(lz|**+?) as |z — 0, and

m(DIE? < Y ais(@)€:5 < pa(lzDIE )

i,j=1

foreachz € Brand & = (£1,...,€n) €R™

(iii) bs(0) = bo < Ofori =1, m;

(iv) there exists a constant v < 0 such that ¢(z) < v for each z € Bg.

Observe that according to (ii) equation (1) is elliptic in Qr\{z = 0} and degenerates
on the axis z = 0 of cylinder Qg. The Dirichlet problem for a special case of equation
(1) with the assumption b;(z) = 0, i = 1,7, is discused in [1]. There is shown that
Dirichlet problem is well-posed in usual formulation (without any additional condition
at the line of degeneracy). Existence of nontrivial lower terms in equation (1) which is
consider here has an essential influense for well-posedness of Dirichlet type problem. It
appears that classical Dirichlet problem in the class of functions bounded in Qr is non-
Fredholm one. Therefore, we are in need of an additional condition in the statement of
Dirichlet type problem. In this work we shall formulate the problem with a supplementary
condition for the asymptotics of solution as |z| — 0.
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Let us introduse the following notation of the domains and manifolds: Q% = Qr\Qs,
By = Bp\Bs (6 < R), Q% = Qr\{z = 0}, By = Br\{z = 0}, Sgp = {z :
|z| = R}, Qr = {(z,2) : 2 € Sr,0 < 2 < H}, Bor = {(z,0) : = € Br},
Ryp = {(.’L‘,H) T E BR}, I'r = Qr U Byr U Byg, P% = FR\{.’II =.0}.

We shall consider the following groblem:

Lu=0 in Q% ueC***(Q%)NCAQRUTYR), 3)
u(z,2) =0 on BorU Byg, 4)
u(z,z) = f(z,2) on Qg, (5)
ll}I—I}o (u(z, z) — g(z/|z],2)) =0, 0<z<H, (6)

where both f(z, z) € C21*%(Qg) and g(z, z) € CZ4*2(Q ) are given functions such
that f(z,2) = 0 on (Qr N Bor) U (g N Byr) and g(z, z) = 0on (21 N By) U (1 N
Bm).

As the main result in this article we shall prove the following theorem.

Theorem 1. Let assumptions (i)—(iv) hold. Then there exists the unique solution of prob-

lem (3)—(6).

2. Auxiliaries
Lemma 1. Let 8 € (0, \) with A = min{e,v}. Then
Lz = boBlz|""? (1 + O(|z|*~#)) as |z| — 0. @

Proof. Notice that condition (2) yields the relations:

n

aij(z) = 0(|'*), Y aij(@)ziz; = O(|=[**7) ®)

i,j=1
a |z| — 0. In view of (iii) and b; € C°+*(Bg) we obtain that
bi(z) — bp = O(|z|*), as |z| =0, i=T1,n. )
By the direct calculation we get the equality

Liz|® = Blz|*~ ﬁ<b0+|x| 1$‘r,, +(8-2)|z|® Z a:;(2)ziz;

3,j=1
£ 3 () — bo) + lec(x)/ﬁ)- 10)
=1

Now, it is easily seen that (7) follows from (10) in view of (8) and (9). Thus, lemma
is proved.
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Lemma 2. Let ) be from Lemma 1 and let function h(z, z) € C?%(S11). Let us define the
function h(z, z) = h(z/|z|, z). Then

Lh (z,2) = O(Jz|*"Y) as |z| = 0. A (11)

Proof. Introduce the vector y = (y1,...,Yn) With yp = z/|zk|, & = 1, n. Taiking in
account the equality

Ewihzi (ya Z) =0, (y’ Z) € Ql'

=1

which holds due to zero-homogenity of function Tz(x, z) (with respect to z), we obtain
that

Lh(z,z) = h.»(y,2) + Z hyzyk (v 2) Z aij(w)%g—y%
Lk=1 ‘i,J’= O

Zhy, (v, 2) Zau -"")a 6:1:J

+ Z hy, (y’ Z) Z yt(b :L‘) bO) + c(x)h(% Z)

This implies, in accordance with (9), as well as the eimbidding h(y, z) € C?(£2;) and
evident relations 8y;/0z; = O(|z|™!), 8%y /8z:0z; = O(|x|~2), the relation (11).
Lemma is proved.

Let us define the class of functions
C1**(Bg) = {v:v e C***(B}) V6> 0, |v| < oo in Br}

Theorem 2 [2]. Let conditions (i)—(iv) be fulfilled. Then there exists the unique solution
of the following problem:

L,v=0 in B%, veCf*"‘(BR), v=¢p on Sg, hm ( (z) — (z/|z|))=0,

where ¢ € C***(Sg) and ¢ € C***(S)) both are given functions. Moreover, the

estimate sup |v] < max { maxs, |¢|, maxs, |%|} holds.
BR
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3. Proof of Theorem 1

Let us build the Fourier series expansions for functions f and g:

f(z,2) =) fa(@)sinmz, (z,2) € Qn, (12)
n=1

9(z,2) =D gn(z)sinyez, (z,2) € U, (13)
) n=1

where vy, = mn/H,

H
fn(z) /f(a: 2)sinynzdz, gn(z)= —ﬁ/g(z,z) sin Yz dz. (14)
0 , 0

Due to smoothness of functions f and g the estimates

|fn(z)| Ml/n |gn(1')| M2/n (15)

hold with M; = maxqp |fz2], M2 = maxq, |g.|- Therefore, series (12) and (13) con-
verge uniformly and absolutely. Besides that, it follows from (14) that f, € C***(Sg)
and g, € C?*(S)). Hence, according to theorem 2, there exists a unique solu-
tion v, € C2+*(Bg) of the problem: (L, — ¥2)v = 0 in B}, v = f, on Sk,
|al:iir_r’xo(v(:::) — gn(z/|z|)) = 0. Moreover, vy, is such that

sup |un| < max { max |fa|, max|ga|}. (16)
B?! SR S

It is easy to verify that the functions v, (z) siny,2, n = 1,2, .. ., represent the set of
the partial solutions of equation (1).

We shall show that the solution u of problem (3)—(6) can be expressed in the form of
the series

u(z,2) = Z Un(z) sinyn 2. an

n=1

In view of (15) and (16) it is evident that series (17) converges uniformly and absolu-
taly in Q% with arbitrary 6. Thus, the function u defined by (17) satisfies both boundary
value conditions (4) and (5).

Let Q' C Q% be an arbitrary subdomain with the boundary Q" from the Liapunov’s
class. According to smoothness of bouth boundary Q' and coefficients of equation (1),
and due to condition (iv) and strong elipticity in domain Q' there exists a unique Green’s
function of Dirichlet problem for equation (1)in domain Q’ [3]. Hence, in view of Har-
nack’s theorem [4], series (17) is twice differentiable in Q'. Since subdomain Q' and
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number & both are arbitrarily choosen, function (17) satisfies the equation (1) evrywhere
in Q%. Moreover, condition (i) and uniform convergence of series (17) in sz yield the
embidding u € C?1*(Q%) NC(Q% UTE) (see, e.g., [5], [6]).

To prove (6), introduce the functions

wi(z,) = g(=/lal, 2) £ (Klz|” +e),

where (3 is the same constant as in Lemma 1, € is positive arbitrary number, and k is
positive constant which will be choosen below.

Let u,, and g(™ be the partial sums of seiies (12) and (13), respectively. Observe that
due to uniform convergence of series (13) on §; there exists an integer no such that

|g(z/1z], 2) — g™ (z/|2], 2) < e
for n > ng and each (z, z) € Q%. This yield the inequalities

un(z, 2) — wi (2, 2) < un(z,2) — g™ (z/I2], 2) — klz|?,

(3, 2) — w3 (2, 2) > un(@, 2) — g™ (2|2, 2) + Kl2]?, (18

which hold evrywhere in Q% for n > . Since limz)—o(un(z, 2) — g™ (z/|2|, 2)) = 0,
n=1,2,...,it follows from (18) that

T (un(2, )~} (5,2)) <O, Lim (un(z, ) = (2, 2)) >0 (19)

|z|—0

for n > ng and each z € (0, H).
According to Lemmas 1 and 2 we get the; relations

L(un — w¥) = FbokBlz|?~1 (1 + O(|z|*P)), |z| =0,

which obviously are uniform with respect to n and €. Since by < 0,k > 0,and 0 < 8 <
min{1, A}, these relations imply the existence of a domain Qg such that

L(up —w?) >0, L(up—w;)<0 (20)

evrywhere in QY if p is small enough.
Let K1 = sup { supgo |ua|}, K2 = maxq, |g|. We choose k such that k > (K1 +
K3)/pP, then if it is easily seen

Un —w} <0, up—w; >0 on I, @1

In accordance with Hopf’s maximum principle [7] it follows from (19)—(21) that ine-
qualities (21) hold in Q9, too, i.e., we have that

|un(z, 2) — g(z/|z], 2)| < kl|z|? -+ € ) 22)
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for n > ng and for each (z,2) € Qg. Letting n — oo in (22) and letting afterwards
|| — 0 in one we get due to arbitrarility of € the validity of (6).

Thus, the existence of the solution of problem (3)—(6) is proved.

The uniqueness of the solution of this problem follows from the maximum principle
which due to (iv) and ellipticity of equation (1) in Q% holds. This completes the proof of
Theorem 1.

REMARK 1. If function g(z, z) is independent of z, the solution u of problem (3)-(6) is
continuously extendable by the values of this function onto the axis z = 0 of cylinder Qr.

REMARK 2. In fact the assumptions that f(z,2) € CZ2i*2(Qg) and g(z,z) €
Cﬁf;“*z(ﬂl) are too strong for the existence of the solution of problem (3)—(6). Really
Theorem 1 holds under the embiddings f € C2(Qr), g € C*(1).
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Apie iSsigimstancios tieséje elipsinés lygties modifikuotaji
Dirichlé tipo uZdavini
S. Rutkauskas

Cilindre nagrinéjama elipsiné lygtis, isigimstanti cilindro aSyje. Suformuluotas Dirichl¢ tipo
krastinis uzdavinys su papildoma asimptotine salygaieSkomajam sprendiniui. [rodyta Sio uzdavinio
sprendinio egzistencija ir vienatis.



