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1. Introduction

In this paper, we present a resolution calculus for the first-order modal logic S4. The
formulas are given not necessary in a clausal form. This method can be used for automa-
tizable proof procedure of a quantified modal logic. We will consider formulas for which
the following conditions hold:

1. the formulas F' contain only logical connectives —, &, V, and no logical or modal

symbol in F lies in the scope of a negation,

2. the formulas are closed, i.e., we consider the formulas without free variables,
the formulas are transformed into Skolem normal form (see [1],[2]),

4. the formulas are of the form G, VG, V ... V G,, where G; is a literal or a formula

beginning with O, ©.

The order of formulas is not fixed in a disjunction or in a conjunction. In what fol-
lows, P, Py, P; denote the atomic formulas. Formulas are denoted by F, G, K, H and M.
Moreover, H and M can be the empty formulas as well. The symbol L denotes an empty
formula.

w

2. The resolution rules

2.1. Classical rules

[P,V H,~Pyv M)o
) =7

6 is a most general unifier of {P;, P,}. We assume that the formulas written over the
line have no common individual variables (this if necessary can be obtained by renaming
variables). Substitution @ is a finite set of the form ¢, /z1, .. .,t,/z,, where every x; is
a variable, every t; is a term, different from z;, and for all i, j such that i # j, x; differs
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from z;. Moreover, if the level (see [1]) of x is n and if the term t contains some symbol
whose level is greater than n, then the substitution of ¢ for z is forbidden.

(c2) (F ﬁi)}\{/ H (c3) res(Ij: -P)
res(F VK,G) res(F&K, G)
(c4) res(F,G)V K (<5) K&res(F,G)
res(F VG) res(F&G)
(<6) G VresF (c7) res(F,G)
res(F&QG)
(c8) G&resF
2.2. Modal rules
] [H VOF,M VvOG|é 9 [HvOoF,Mv $GJé
M) Evivoeropn ™ [HV MV Ores(F, G)|6
[H voF)e [HV OF)6
(m3)  THV oresFo (m4) T OresFio |
res(OF,0H) res(0H,OF)
(m5) Ores(F, H) (m6) Ores(H, F)
res(OF, H) res(OF, H)
(m7) res(F—,H) (m8) res(0OOF+, H)
(m9) [H VOF, K6 (m10) [H vOF, K]

[HVres(F-,K)|8

[HVres(DOF+, K)|0

F~ is obtained from F (see [1]) by subtracting one from the level of those symbols
that have a level greater than the modal degree of OF .
F* is obtained from F' by adding one to the level of those symbols whose level is

greater than the modal degree of OF.

2.3. Simplification rules

) @ = e T
0 %
(s7) res(L fF, H) (s8) res(DlJ.,H) (s9) res(<>_L_L, H)



272 S. Norgéla

2.4. Duplication rule

F(z™)
@ FEEre)

Here y is a new variable, ™ occurs only in F(z™), F'(z™) is not in the scope of more
than n modal, and F'(z™) is not in the scope of a negation.

2.5. Factorization rule

FVvFVH
The main results

We define the generalized formulas as follows:
1. If F is a formula, then resF is a generalized formula.
2. If F and G are formulas, then res(F, G) is a generalized formula.
3. If F is a generalized formula, then - F is also a generalized formula.
4. If F is a formula and G is a generalized formula, then
(FVG),(F&G),(F — G),(G — F),0G, OG are generalized formulas.
Note that we consider only Skolemized formulas.The formulas F, G, K, H and M
met in the resolution rules do not contain res.
A derivation of the formula (generalized formula) F' from a set of formulas S is a
finite sequence G1, G2, . . ., G, such that
1. Gs=F.
2. G; is a formula or a generalizec formula.
3. For every i < s at least one of the following conditions holds:
(a) G; €S.
(b) For some j, k < i F; follows from G;, Gy, by one of the rules (c1), (c2),
(m1)—(m4), (m9), (m10) or (s1)- (s4).
(c) Forsome j(j < i) Gj = G(resK), i.e.,, resK is a generalized subformula of
G, Gi = G(resH) (or G; = G(H)) and resH (or H) follows from resK by
one of the rules (c3)—(c8), (m5)—(m8) or (s5)—(s9).
(d) For some j G; = G(F(z™)) and G; = G(F(z")&F(y")). Here y is a new
variable satisfying the conditions of the rule (d1).
(e) Forsome j < i G; = G(K) is a formula, G; = G(M) and M follows from K
by one of the rules (s1)—(s4) or (f1).

Theorem 1. S 1 ifand only if S is refutable.
Proof. Soundness and completness of a resolution modal system 54 is proved in [1]. We

will show that every application of a rule of resolution modal system in [1] is simulated
by a finite sequence of applications of . onsidered calculus.
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Assume that a formula which does not satisfy the Condition 4 described in the in-
troduction is obtained. In this case, we can obtain the required form by applying a finite
number of rule (¢2).

Each application of rules (m1)—(m4), (m9) and (m10) introduces generalized for-
mulas containing res. The rules (c3)—(c8), (m5)—(m8), (s5)-(s9) and (d1) present re-
cursive transformation of generalized formulas,i.e., of the formulas containing res. We
simulate the applications of the rules (c1), (¢2), (m1)—(m4), (m9) and (m10) for the
subformulas which are in the scope of res using the above-introduced resolution rules.
As a result a simplified formula not containing res can be obtained by applying the rules
(85)—(s9). .

The rule (c2) from [1] of the form if C is a 0-resolvent of S' U { A}, then C v B@ is
a O-resolvent of S' U {A U B} is simulated by rules (c1), (c4), (c6) of the calculus in
question.

Rule (c3) from [1] of the form if C is a O-resolvent of S’ U {A}, then C&B0 is a
6-resolvent of S' U { A& B} is simulated by rules (c5) and (c8) of a considered calculus.

Rule (c4) from [1] of the form if C is a 0-resolvent of { A, B}, then C is a 0-resolvent
of { A& B} is simulated by rule (c7) of a considered calculus.

Rules (m1)—(m4) from [1] are simulated by the corresponding rules (m2), (m3),
(m1) and (m4) of a considered calculus.

The simplifications rules from [1] are simulated by rules (s1)-(s9) of a respective
calculus. Moreover, each formula of a considered calculus is a particular case of some
rule from [1]. The theorem is proved.

Consider now the formulas of propositional modal logic for which the following con-
ditions hold:

o the formulas F' contain only logical connectives — and V,
e no logical or modal symbol lies in the scope of a negation.

Now, we shall present our calculus in this particular case (p denotes a propositional
variable).

Calculus MS4
(1) Bi_g’\;‘?TVM (c2) res(p \;IA\T/, ;4}7 v M)
(m1) W (m2) Hv D}p}, 3;; vM
™) FeaEE ™ EVICoreRO
(m5) res(H \I/{D\f’]\;p v M) (m6) res(H V I?;:/, ;I—.p Vv M)
(m?7) res(H v OF, M VOG) res(H VOF, MV OG)

HvivoreaF.c) ™) HvMVores(F,C)



274 S. Norgéla

oF oF ol
(s1) - (s2) ooF (s3) -
OF Fv 1 FVFVH

) T & 5 U g

DEFINITION 1. A derivation of a formula F' from the set of formulas S is a finite se-
quence Gy, Gy, . .., G, such that
1. Gi(i=1,2,...,s) is a formula or a generalized formula.
2. Gg=F.
3. For every i < s at least one of the following conditions holds:
(@ G €S, -
(b) For some j and k < i F follows from G; and G, by one of the rules (c1),
(m1)—(m4).
(c) Forsome j < iG; = G(resK), i.e., resK is a generalized subformula of G,
G; = G(H) and H follows from resK by one of rules (c2), (m5)—(m8).
(d) For some j < i G; = G(K) (K does not contain res), G; = G(H) and H
follows from K by one of the rules (s1)-(s5), (f1).

Disjunctions of modal literals are called modal clauses. Modal literals are expressions
of the form g, Oq or ©gq, where g is a propositional variable or its negation. Initial modal
clauses are expressions of the form OC, where C is a modal clause. The following propo-
sition is improved in [3): for any formula F one can construct (by introduction of new
variables) the list X, of initial clauses and a propositional variable g such that g4 F if
and only if }‘54 &XF —g.

It means that, in the general case, we can consider the set S of input formulas con-
taining only modal and initial clauses. Note that the rules of MS4 allow us to derive from
S formulas which are not initial (or modal) clauses.

For example, O—p V Oq,0(r V =g V =s) Fysq O—p VO(r V -s).
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Rezoliuciju skaiciavimas modalumy logikai S4
S. Norgéla

Darbe nagrinéjamos bendro pavidalo modalumy logikos formulés. Aprafomas rezoliuciju
skai¥iavimas modalumy logikai S4 bei irodomas jo pilnumas ". korektifkumas.



