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Universal kriging
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Suppose the spatial data Z(s;), . .., Z(s,) observed at spatial locations {sy,...,8,}
are modelled as a collection of random variables generated by the random field

Z(s) = z'(s)B + 6(s), _ (1)

where z'(s) = (1(s),...,24(s)) is a ¢ x 1 vector of nonrandom regressors and 8 =
(B,...,B%) € B are parameter vectors, B being an open subset of RY. Assume, that
{6(s) : s € D C R?} is a zero-mean second-order stationary random Gaussian field
with spatial covariance defined by a parametric model cov{é(s), §(t)} = C(s —t; ) for
all s,t € D, where § € © is a p x 1 parameter vector, © being an open subset of RP.

Spatial prediction refers to predicting the unobserved value of Z (s0) at known spatial
location sp € D fromdata Z = (Z(s1), ..., Z(sn)) - Denote any predictor by p(so) and
let ¥ = |lcov(Z(s:), Z(s;)); j=1,....n0 € = (C(s0 — 5158),...,C(80 — $5;0)). The
prime always will denotes vector transpose in this paper.

DEFINITION. The mean-squared prediction error (MSPE) for any spatial predictor p(so)
is defined by

MSPE(p(s0)) = E(Z(s0) — p(s0))". @
Using the model given by (1) we can write
Z=XB+56,
where X is an n x g matrix whose (i, j)th element is z;(s;), 8§ = (6(s1), - .., 6(sn))".

Assume that the spatial dependence parameter 6 is known. Then the best linear unbia-
sed estimator of 3 is generalised-least-squares (GLS) estimator

Bats = (X'T71X)71X'2"12,
that is, the value of 3 that minimizes

(Z-Xp)E"YZ - XP).
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If £ = o2, then the appropriate minimizer is
Bots = (X' X)1X'Z,

which is the ordinary-least-squares (OLS) estimator of . Because the OLS estimator
does not require kowledge of ¥ for many practical situations it was used even when
T # 02l

Suppose it is desired to predict Z(so) linearly from data Z using a uniformly unbiased
predictor. That is, the predictor is of the form

p(so) =XZ, for XX =1, ?3)

where X' = (A1, - - -, An), ' = (z1(50), - .., Tq(s0))-
Universal kriging predictor puk(s0) = A, Z, where

X = {c+ X(X'EX) "}z - X'z} 27, @)
is the optimal predictor among ones defined in (3), which minimizes the MSPE (see, €.g.,
Cressie, p. 154). ’

Then minimum mean-squared predictor error or kriging variance is

MSPE(puk(s0)) = C(0) = 2Xsc+ XyThu. )

Define two unbiased linear predictors for Z(so) in the following way

Pots(50) = ='Bots =1'Z, ©6)
where

7= (XXX, @)
and |

Dpgts(S0) = x’ﬁgla =7'Z, ®
where

=2 (X'S71X) 7 X'5 7L o

It is obvious that linear unbiased predictors pols (-) and Pgls() are less optimal than
puk(+) in the sense of minimum of MSPE. But as we see from (4), (7) and (9) they
are simpler and require less computation time in practical realizations. Comparision of
MSPE for predictors pois(-) and pgls (+) with kriging variance given in (4) are presented
in the following lemma. T
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Lemma. Suppose that for the prediction of value of the random field Z(s) defined in
(1) at the location so from observed data Z' = (Z(s1), ..., Z(sn)) we use three linear
unbiased predictors pois(so), Pgis(So) and pur(so). Then

MSPE (pgis (s0)) = MSPE (puk(s0)) +<' T (I-X(X'E71X)1 X'E7 ) ¢, (10)
MSPE (pois (s0)) = MSPE (puk(50))+¢'Z7 (I-X(X'E71X)"1X'S ) e
+22' (X'T71X)I XS - (X'X) ' X ) e
42 (X' X)TX'EIX(X' X)) - (X'TTIX) ) 2 (1)

Proof. Since considered predictors are unbiased then

MSPE(pots(s0)) = D(Z(s0) — poLs(s0)) = C(0) —2n'c+n'In, (12)
MSPE(pgLs(s0)) = D(Z(s0o) — pcLs(s0)) = C(0) — 2¥'c++' %, (13)

Substituting (7), (9) respectively in (12), (13) and using (4), (5) we complete the proof
of the stated theorem.
For comparision of these methods of spatial prediction we use the quantities

. _ MSPEg, - MSPEy . _ MSPEq, - MSPE,
1= MSPE. ' 2= MSPE.,

These quantities can be easily calculated by (10) and (11) in the case of known spatial
dependence parameter 6. But in practical situations usually true value of the parameter
0 is unknown. Then often predicting proceeds in the following way, by assuming that
estimated value 8 is the true value. Coefficients k1 and Ko then are calculated by formulae
(10), (11) with 6 substituted by 8.

EXAMPLE. Data from Klaipeda Marine Research Centre surveyed at 9 locations in the
costal zone of Baltic sea are used. PH is considered as a response variable and depth,
temperature and salinity are considered as regressors. Isotropic exponential covariance
model (see, e.g., Ripley, 1981, p. 56) is used for fitting. Fitted by least squares exponential
model of covariance function is

C(h; 8) = 10.447¢~0-008,

where & = (10.447; 0.008).
For fitted covariance model xk; = 17.909 and k2 = 8.536. That shows the significant
advantage of the universal kriging prediction over the two proposed unbiased predictors.
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Straipsnyje palyginami tiesinés nepaslinktos prognozés metodai su optimaliu universalaus kri-
gingo metodu stacionariy Gauso lauky atveju. Pateikiamos analitinés i§raiSkos ¥iy metody vidutinei
kvadratinei prognozés klaidai skai¢iuoti. Siy formuliy pagalba palyginami prognozés metodai rea-
liems duomenims, naudojant eksponentini kovariaciju modeli.



