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1. Introduction

We consider the problem of estimating a posteriori probabilities from the multi-dimen-
sional sample supposed to satisfy multidimensional Gaussian mixture model. It is known
(see, e.g. [6] and [7]) that projection to lower dimension subspace can reduce errors of
estimates of a posteriori probabilities. In practice an investigator faces a dilemma: classi-
fication of the initial sample or projection to lower dimension subspace and then classifi-
cation of the projected sample. One of possible methods to select whether to project the
data to Jower dimension subspace or not is the bootstrap method. We simulate realiza-
tions with some preliminary parameters obtained from the sample, then compare errors
of estimates of a posteriori probabilities, assuming that preliminary parameters are true
parameters of the sample. At this point we make a decision to project data to lower di-
mension subspace or not. If so, we,apply projection pursuit algorithm to the sample using
obtained dimension of the discriminant subspace. One of the main difficulties is to ob-
tain sufficiently good preliminary parameters. Results presented in this paper show that
we can use completely automatic procedure for obtaining parameters for the bootstrap
procedure. )

Theoretical background of this problem is given, e.g., in [8]-[10]. We are thankful to
prof. R. Rudzkis who gave the idea and many constructive and valuable remarks.

The introduction presents already known methods. Description of the EM algorithm
and the projection pursuit algorithm is given, e.g., in [8]-[9].

Main definitions. Let we have g independent d-dimensional Gaussian random vari-
ables Y; with different distribution densities ¢(-; M;, R;) o @i, where means M; and
Covariance matrices R;, ¢ = 1,2,...,q, are unknown. Let v be random variable (r.v.)
independent of Y;, 4 = 1,2,...,q, and taking on values 1,2, .. ., g with unknown prob-
abilities p; > 0,1 = 1,2,...,q, respectively. In this paper we assume that number of
classes q is known. We observe d-dimensional r.v. X = Y,,. Each observation belongs to
one of q classes depending on r.v. ¢ . Distribution density of r.v. X is therefore a Gaussian
mixture density

q
f(2) =3 " pigi(e) = f(z,6), zeR?, (1)

i=1
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where 6 = (pi, M;, Ri, 1 = 1,2,...,q) is an unknown multidimensional parameter.
Probabilities p; = P{v = i} are a priori probabilities for r.v. X to belong to ith class.

We will consider the general classification problem of estimating a posteriori prob-
def

abilities (i, ) = P{v = i | X = z} from the sample {X1, Xs,..., Xy} = XV of
i.i.d. random variables with distribution density (1). Under assumptions above
n(i,z) = mo(i,x) = Pipi(T) i=12,...,q, z€R% 2

f(=,60)°

The most common method to estimate a posteriori probabilities is based on the EM-
algorithm (see, e.g., [8]).

Let V = cov (X, X) be the covariance matrix of r.v. X. Define the scalar product of
arbitrary vectors u, h € R% as (u, h) = uTV~1h and denote by ug the projection of ar-
bitrary vector u € R to a linear subspace H C R¢. Discriminant space H is defined as a
linear subspace H C R? withtheproperty P{v =i | X =z} =P{v=1i | Xy = zu},
1=12,...,¢, € Rd, and the minimal dimension. Denote k = dim H. It is known
that for Gaussian mixture densities (1) with equal covariance matrices we have k < g.
Clearly, if £ < q and H is known, then it is better to estimate a posteriori probabilities
from the projected sample rather than initial sample. Unfortunately, in practice H is not
known and must be estimated and we get additional estimation errors. As shown in [6]
and [7] in many cases despite additional errors the projected sample allows to decrease er-
rors of estimation of a posteriori probabilities. But till now we do not have clear decision
rules whether to project the sample or not.

2. Computer simulation results

We present computer simulation results of the statistical procedure of the selection one
of two methods of estimating of a posteriori probabilities:

1) Method based on application of the EM algorithm to the initial sample from R*.
This method is implemented in software created in Institute of Mathematics and Informat-
ics (see [5]). This software does not require user intervention, because initial parameter
estimates are selected from the sample;

2) Two stage estimation method, where in the first stage we estimate k-dimensional
space H from the sample (see [9], [10]). In the second stage a posteriori probabilities are
estimated using first method to the projected sample.

Computer simulation was done as follows. We simulate the sample X~ with the se-
lected mixture model and the selected sample size (in our case N = 300). As basic
mixture model we selected 5-dimensional Gaussian mixture model with three clusters
with means (-3, —e, 0,0, 0), (0, 2¢,0,0,0), (3, —a, 0, 0, 0), equal probabilities and unit
covariance matrices. At the next step we obtain parameters for bootstrap using the com-
pletely automatic procedure, which starts from no information about cluster structure.
Bootstrap begins with simulating selected number (in our case 10 realizations) of in-
dependent realizations with obtained parameters now supposed to be known. To each
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realization we apply the procedure of calculating accuracy of estimation of a posteriori
probabilities without projection, with projection to one-dimensional subspace and with
projection to two-dimensional subspace (as in [7]). In all examples we assume that co-
variance matrices are equal and use this in all procedures.

In this paper we present four examples (all results are not covered by this paper) of
computer simulation results that demonstrate applicability of the automatic parameter
estimation procedure and bootstrap methods. For comparison we present (Examples 1, 2)
results when parameters for bootstrap are obtained from theoretical parameters that were
used for simulation of the sample XV . In Examples 3 and 4 we make “true” bootstrap.

We studied accuracy of estimation of a posteriori probabilities, number of Bayesian
classification errors (i.e., classification using estimated parameters vs. classification using
theoretical parameters) and true classification errors (i.e., Bayesian classification using
estimated or theoretical parameters vs. known true class numbers of the sample). Ac-
curacy of estimation of a posteriori probabilities is measured as mean absolute distance
I(#N, N between the estimated a posteriori probabilities #/V and the theoretical a pos-
teriori probabilities V. We compare distance I(#V, 7V) and I(#¥, 7V) where #V are
obtained from MLE in the initial space and #} are obtained from MLE in the discrimi-
nant subspace H. Number of Bayesian classification errors is measured as percentage of
differences in Bayesian classification comparing classification using known theoretical
Pparameter versus classification using estimated parameter.

In Example 1 (see Figs. 1-3, in all Figs. on x axis we have parameter a) we make
“false” bootstrap (series are simulated with theoretical parameter) and project data to =
and y axes. We can compare accuracy of estimation of a posteriori probabilities, number
of Bayesian classification errors with those given in [6), where we asssumed that the
covariance matrices are non-equal. We get significantly less estimation errors, but the
tendencies are the same.

In Example 2 (see Figs. 4-6) we make bootstrap with parameters obtained from the
theoretical parameters that were used for simulation of the sample XV .

In Example 3 (see Figs. 7-9) we make “true” bootstrap and project data to the direc-
tions obtained by projection pursuit algorithm.

In Example 4 (see Figs. 10-12) we use Gaussian mlxture model with slightly non-
equal covariance matrices. We replace corresponding (depending on cluster number) el-
ement on the diagonal of unit covariance matrix by the value of 1.5. But despite of it in
all calculations we assume that covariance matrices are equal.

Performed tests show that the automatic procedure along with bootstrap procedure
can be used to make a decision whether to project the data to lower dimension subspace
or not. The advantages depend on mixture model. In general, we can make a decxsxon to
Project data to lower dimension subspace.
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Fig. 1. Mean absolute error
(average of 100 realizations)
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Fig. 4. Mean absolute error
(average of 100 realizations)
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Fig.2. Number of classification
errors (avg. of 100 realizations)
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Fig.5. Number of classification
errors (avg. of 100 realizations)
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Fig. 3. True classification errors
(average of 100 realizations)
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Fig. 6. True classification errors
(average of 100 realizations)
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Fig. 7. Mean absolute error
(average of 100 realizations)
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Fig. 10. Mean absolute error
(average of 20 realizations)
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Fig.8. Number of classification
errors (avg. of 100 realizations)
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Fig. 11. Number of classification
errors (avg. of 20 realizations)
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Fig. 9. True classification errors
(average of 100 realizations)
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Fig. 12. True classification errors
(average of 20 realizations)
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‘Bootstrap metodai parenkant diskriminantinés erdvés dimensija
G. Jakiméqskas, R. Krikstolaitis

Nagrinétas aprioriniy tikimybiy statistinio jvertinimo u?davinys, kai stebéjimai tenkina daugia-
madio Gauso miinio modeli. Tiriamas bootstrap metodo taikymo tikslingumas, parenkant viena
i¥ dviejy metody: EM algoritmo taikyma pirminiams duomenims arba projektuotiems i maZesnés
dimensijos erdvg.



