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f. Introduction

Let {Z(s) : s € D C Z?} be a random field on a lattice D. When building models for
data on a specific lattice, no possibility is given to a realization occurring on non-lattice
locations. Such spatial models on lattices are analogues of time-series models. Here it is
more appropriate to think of the (finite) data set of Z’s as a part of an increasing lattice
whose sites tend out to infinity in at least one direction of Euclidean space. The concept of
lattice is closely related to the concepts of the neighbors and neighborhood. According to
Cressie (1993), a site ¢ is defined to be a neighbor of site s if the conditional distribution
of Z(s), given all other site values, depends functionally on 2(t), for t # s. Also define

N, = {t: tis a neighbour of s} (0))

to be the neighborhood set of a site s.

The notion that data close together in space are likely to be correlated is natural. And
the most obvious departure from the independence model is to assume that considered
spatial process is Markov random field.

DEFINITION 1. Any probability measure whose conditional distributions define a neigh-
borhood structure {N, : s = 1,...,n} through (1) is defined to be a Markov random
Sfield [1].

The most useful class of Markov random field models for continuous data is the class
of so called conditional Gaussian models.
Assume that the model of Z(s) in population §; is

Zi(s) =] ()B + &(s),

where z] (s) = (z{(s),...,{(s)) ar2 ¢ x 1 vectors of nonrandom regressors and §; =
B},...,8)T € B, 1 = 1,2, are parameter vectors, B being an open subset of RY.
Suppose, that {£;(s) : s € D C Z2} is a univariate zero-mean random Gaussian field
with spatial covariance defined by a parametric model cov{e;(s), &;(t)} = o(s —t;6)
for all s,t € D, where 6, € © is a p x 1 parameter vector, © being an open subset
of RP, | = 1,2; this means that the considered random field is intrinsically stationary
field. (Intrinsic stationarity of {ei(s) : s € D C R?} means that E {(&;(t) — &1(s))?}
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depends only on (s —t), forl = 1,2 and s, t € D.) The attention will be restricted to the
homoscedastic models, i.e., 7,(0; §) = o2, for all § € ©. Suppose that 62 are known and
let |z(s)] € M < oo, for s € D.

If pi(2(s)/{2(t), t # s}) denotes the conditional probability density function of
Z(s) for Q, then

() st # )= exp [ 0 (201 9)) vt @

where \i,(+) and 72 are its conditional mean and variance at location s, respectively,
l=1,2,s=1,...,n

Suppose that considered modei satisfies a condition of “pairwise-only dependence”
between sites, i.e.,

Als ({Z(t) it 95 8}) = s + ZQ£t (z(t) - /"“t)!

where ¢}, = gl,, ¢, = 0, and ¢}, = O for u ¢ N, [2]. Here ¢!, is a function of the
unknown parameter a, i.e., g},(c), but for notational convenience suppressed notation
¢t = ¢;(a) will be used.

On the base of factorization theorem [2], it is not difficult to show that

Z ~ N(p, Cl_lMl) | 3)

provided C; = I — @y is invertible and C;"' M, is symmetric and positive-definite
matrix describing spatial dependence between observations at different locations; here
Z=(Zu,.Zin)T = (s puin) T pits = 27 (8) - B (s = 1,...,m), Qrisan
n x n matrix, whose (s, t)th element is g%, and M = diag(73,...,7%)isann x n
diagonal matrix.

In order the asumption about the homoscedascity of model to be valid, the condition
(cy Ml),, = (Cy 1 M3),s, where (C 1 M,),s means a diagonal element of the matrix
(C;*M;), I = 1,2, for the unconditional variance at location s 02 = (C;” 1M;),s must
be satisfied. The expression (3) is called a conditional Gaussian autoregression (CAR)
model.

Let Z(r) be an observation at r € D from one of the two populations {2; and 2.
Under the assumption that the populations are completely specified and for known prior
probabilities of populations 7., o, (71, + T2r = 1), the Bayesian classification rule
(BCR) dp(-) minimizing the probability of misclassification (PMC) is

dp(z(r)) = arg Josx TP (2(r)), @

where z(r) is the observed value of Z(r). Denote by Pj the PMC of BCR. Usually Py
is called Bayes error rate (see, e.g., Hand 1997, ch 7.).
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In practice, however, complete description of classes most often is not possible. Thus,
the probabilistic characteristics of each class must be estimated from training samples.
Most widely used statistical approach for the estimation of unknown mean and variance,
assuming the spatial dependence parameter to be known, is the maximum likelihood
(ML) method. So, the plug-in rule is usually formed with using ML estimates. Such kind
of plug-in rules are extensively applied in practice. But the spatial dependence parameter
need to be estimated also. In ML function this parameter appears in normalizing constant
and analytical expression for its estimator in general case is not available. R.K. Pace and
D. Zou (2000) consider special case of correlation matrix and particular neighbourhood
structure and present analytical expression of estimation of spatial dependence parameter
as the real solution of cubic equation. However, as Cressie (1993) designates, the method
of ML for estimation of lattice-model parameters is no longer automatically the method
of choice. In the general case for conditionally specified models, a number of modified
likelihood-based estimation procedures have been proposed. One of these procedures is
pseudo maximum likelihood (PML) estimation method introduced by Besag (see, e.g.,
[1]). The PML estimator would be consistent as the training sample size is increased.
When the PML estimation procedure is used, the efficiency loss can occur because the
maximization of the objective function not always yield functions of a minimal sufficient
statistic, unlike for the ML estimator. On the other hand, working with exact likelihood’s
unwieldy normalizing constant is avoided. It is useful technique for the estimation of the
unknown spatial dependence parameter.

Let T; = {Zn,..., Zin, } be the training samples, where Zix = Z(s}) denotes the
kth observation from i, 1 =1, 2. In this paper it is supposed that o, the parameter of C;
(! =1,2),and o2 are known, and ML estimators of §;, | = 1,2, based on T are used.

PutT ={T), T2}, N=N; + N3 Let ﬂl, ﬂz be the estimators of £, B2, respectively,
based on T', and let fiy(r) = ¥ (r)f;. The plug-inrule dp(2(r), ir, fize, 0 ,.) is obtained
by replacing the parameters in (4) with their estimators, i.e.,

dp(2(r), Bar, for, 0%) = arg e, mpu(2(r); B, 7).

Then the corresponding discriminant function W, also known simply as the samplé linear
discriminant function (see McLachlan, 1974) is defined as

1. ~ ~ ~
W, = (Z(T) - 5(/117- + /,1,2,.)) (B1r — /-"21')/0'3 + Y.

DEFINITION 2. The actual error rate for dp (z(r), i1, fiz, 02) is defined as

2
P"(fi1, fia, 0%) & Zm/(l—fs(l, dp(2(r), B1r, B2r, 03));)1 (z(r);m,.,af)) dz(r).
=1

DEFINITION 3. The expectation of the actual error rate with respect to the distribution
of T desrgnated as E‘T{ P (fi1, i2,02)} is called the axpected error rate (EER) for the

dp(2(r), Brr, H2r, 02).
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Asymptotic approximations and asymptotic expansions for EER in case of indepen-
dent observations were considered by many authors (see, e.g., Okamoto 1963, Du&ins-
kas 1997). Mardia (1984) considered similar problem of classifying spatially distributed
Gaussian observations with constant means. But he did not analyze EER and probabi-
lities of misclassification. In this paper the asymptotic approximation for the EER of
classifying an observation from CAR model with different means depending on the lo-
cations is obtained. ML estimators of means are used in the plug-in version of Bayesian
classification rule. A comparison for the accuracy of obtained asymptotic approximation
with Monte Carlo simulations when training sample sizes are small is made.

2. Approximation for the EER

The attention will be restricted to the case when the effect of cross-correlations between
observations from different populations is negligible. In this paper it is supposed, that if
Z(s) is from €, and Z(t) is from Q, then cov (Z(s), Z(t)) = 0.

The expectation vector and the covariance matrix of TV = (Zuy,...,Zin,)T are
o= (... pun,)Tand Iy = Cf 1 M, respectively, where C; is the matrix of order
N; x N, whose (s, t)-th element is ci,(h;) = (st — t1), s,t = 1,...,Nj,and M =
diag (77, .. T, )» L = 1,2. Let X* be an Ny x g regressor matrix with ith column
(=4, .., Zly,;)'s where zh,==zi(sh).i=1,...,a.k=1,...,Ni,l =1,2.

Lemma. For | = 1,2, ML estimators of 51, B2 based on T are
b= (XFMz_ICle)_IX,TM,"C,T,V, 1=1,2.

Proof. The log-likelihood of T is
1 1 1 -
In L; = const + 5 In ICll - 5 lnlMll - E(Tlv - Xzﬁz)TMl 101(T,V - Xzﬂ;),
l =1, 2. Solving the equations 6—'}'.7“'1- =0, [ = 1,2, we complete the proof of Lemma.

It is obvious, that for any r € D [y = m,T(r)ﬁ; for finite N have known exact
distribution of the form

Bir ~ N (i, ap), ' (3

where o] = 7 (r)(XF M 'CX)) 1z (r).

To give an approximation the assumption rank (X 1y = q,1 =1,2,is needed.

Puty, =In 1,:‘;’:' ALy = Hir — ir, Ag = (pr —l‘2r)2/02' Let &(-) and ¢(-) denote
standard normal distribution and density functions, respectively.
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Then the actual risk for dg(z, fi, far, 02) (see McLaclan (1974)) is

P" (fiyy, fior, 02) = 1, ® (_ (p1r — § (Bar + B2r)) (Bar = Bar) [0* + ’Yr)
T Ty - r

\/ (Brr — Bi2r)? 02
+ mor® ((M' = 3 (Bar + fior)) (Bar — far) Jo? + 7,.)
V@rr = r)? /02

For notational convenience, we shall henceforth omit the subscript or superscript 7 on
pir, PT( ), af ...

Let P = 8P( )/0f, P = 8°P( )/0pi0R;, Py = 8°P( )/0p:0R;07k.
P, = 8*P( )/0:0;080f: (i, j, k, 1 = 1,2) be the partial derivatives up to fourth
order of P (fi1, fiz, 02) evaluated at fi; = 1, fiz = pa.

Theorem. Suppose that stated assumption holds. Then the approximation of EER for the
dB (Z(T)’ ﬁlrv ﬁ2r, 02) is

Br (P (i, no?)} = Pa+ o ()

A-12 A-12
x (af+a§+w(a§+a§)+ 5 alaz).

Proof. Since P(fiy, fiz, 0%) is invariant under linear transformations of data we use the
convenient canonical form of 62 = 1 and u; = A, pz = 0 (see Dunn (1971)). Expand
P (fi1, fiz, 0%) in Taylor series about the point Z; = A, fiz = 0. Taking the expectation
with respect to the distribution of T" and dropping the fifth order terms we have

2 2
~ o~ ~ 1 ~ A
Er (P (fi1,fi2,0%) ~ Pp+ ) PO Er {Af} + 3 ) PP Er {Amd Rk}
=1 Lk=1
1

*3

2
Y POLEr {ARARARR)
k,l,m=1

1 o A A
+5i 2 PimnEr (AmARABRAR}..  (6)

" k,,mn=1

Then from (5), the following hold

Er{(Am)*} =a Br{Amdf}=0,

Er {(Aﬁt)s} =0, Er {(A;;,)“} = 30%a?, : Q)]
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! = 1,2.Since P(fiy, fiz, o) is minimized at fi; = p, then
PV =0, 1=1,2 - ®

Then putting (7), (8) and higher order derivatives of P ({1, fi2, 02) into (6) we comp-
lete the proof of the stated theorem.

3. Example

As an example the integer regular 2-dimensional lattice is considered and the second-
order neighborhood scheme (Fig. 1.) for training sample used. It is assumed that there
are 4 spatially symmetric observations in training sample and that the spatial structure
is of the same form for each class. The comparison of obtained approximation of EER
(denoted by P,) with Monte Carlo simulations (denoted by Pasc) for one special case,
with 7; = 0.2 is presented. Suppose, that regressor is of the form z(s) = 1/(|s|? + 2.5)
ahll, if s#t

and spatial dependece is described by g5:(a) = { 0 fsmt”

Fig. 1. Second-order neighborhood scheme.

Table 1
Comparison of approximation with simulation (a = 1)

A Py Pyc  Pa/Pumc
1.0 032796 0.43852 0.74788

14 0.26678 0.38447 0.69389

1.8 021201 0.34784  0.60950

22 0.16439 0.27031 0.72005

26 0.12422 0.22831 0.54407

30 0.09133 022274 041005
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In Table 1 the values of asymptotic approximation of EER and Monte Carlo simula-
tion values obtained by taking 100 replications at each location are presented. Column
with ratio P4/Pps¢ allow us to estimate the accuracy of proposed approximation. We
can conclude that this approximation is appropriate even for small training sample sizes.
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Salyginiu autoregresiniy lauky diskriminantiné analizé
J. Saltyte

Straipsnyje nagrinéjamas uZdavinys apie objekty i§ srites D C R? klasifikavima pagal
salyginiy Gauso autoregresiniy lauky stebéjimus. Pateiktas asimptotinis klaidos tikimybés sklei-
dinys, kuris lyginamas su Monte Karlo metodu gauta klaidos tikimybe.



