Liet. matem. rink., T. 40, spec. nr., 320-328
© 2000 Matematikos ir informatikos institutas

Computing permutation groups of error-correcting
codes

Gintaras SKERSYS (VU)

e-mail: gintaras.skersys@maf.vu.lt

1. Presentation of the problem
1.1. Error-correcting codes

If we transmit data, e.g., a string of bits, over a channel, there is some probability that
the received message will not be identical to the transmitted message. In order to reduce
the probability of errors, the original message is encoded before the transmission, adding
redundancy to it in some way, and decoded using this redundancy after the transmission.
We can do this in the following way.

Let F, be the finite field with g elements. An [n, k] linear code C over Fy is a k-
dimensional linear subspace of F'. The parameters n and k are called the length and the
dimension of C, respectively. The elements of C are called codewords.

Let’s take a basis of the linear subspace C and let’s form a matrix G where the rows
of G are the basis vectors of C. The matrix G is called a generator matrix of C.

We suppose that the original data is a stream of elements of F,. We divide this stream
into words v of length k (row vectors of F"), and we encode each word separately.
Encoding a word v consists of multiplying it by the generator matrix G, i.e., we compute
x = vG € C, and we transmit it. The channel adds noise to the transmitted codeword,
yielding a received vector y = x+e, wheree € Fg' is an error vector. The received vector
y is decoded by searching the closest codeword x' of C, where the distance between two
vectors of F" is the Hamming distance (the number of posmons in which the vectors
differ), and by computing the word v/ € F" from the equation x’ = v'G.

This procedure can correct at least | 451 1 | errors, where d is the minimum distance of
C, i.., the minimum Hamming distance between any two distinct codewords of C.

For future reference we give here some more definitions related to linear codes.

Let C be an [n, k] linear code. The Hamming weight of a vector v = (v1,...,vn) €
F;' is the number of nonzero components v;. The minimum weight of C is the minimum
Hammmg weight of the nonzero codewords of C. Let A; be the number of codewords
of C having Hamming weight equal to i. The weight enumerator of C is the polynomial
w (C) Z:;:O A X*.

Ifu= (u1,...,Un), V = (v1,...,0n) are vectors of F7, their scalar product is
U-V =uv + - - + Un¥n. The duai code C* of C is defined to be C+ = {u € FJ' |

Computing permutation groups of error-correcting codes 321

u-v = 0forall v € C}. The hull H (C) of C is its intersection with its dual code, i.e.,
H(C)=CnC.

Let J be a subset of {1,...,n}. The code C punctured in J, denoted by Cy, consists
of all elements of C where the coordinates indexed by J are replaced by zeros.

1.2. Equivalence and permutation group

For the purpose of studying the errci-correcting properties of linear codes for any channel
with independent errors, two linear codes that differ only in the arrangement of symbols
have the same probability of error. Two such linear codes are called equivalent. More
precisely, let Q be a set of size n used to index the coordinates of the vectors of F;,
and let Sym (2) be the symmetric group on . We denote by i¢ the image of i €
under the action of the permutation g € Sym (). A permutation g € Sym () acts
on a vector v = (v3);cq € F7F as follows: v = (v;;-1),., Where g7* is the inverse
permutation of g. Two codes C and C’ of length n are equivalent if there exists such a
permutation g € Sym () that C' = C9, where C9 = {c? | ¢ € C}. The permutation
group Perm (C) of a linear code C of length n is the subgroup of all the elements g of
Sym () such that C9 =C.

The study of permutation groups and equivalence of linear codes is an interesting
problem of the theory of error-correcting codes. The knowledge of the permutation
groups helps to classify the codes, to compute their weight enumerators. Moreover, some
decoding algorithms use the permutations. The permutation groups of most classic codes
are rather particular (the Mathieu group, the linear group, the affine group, the projective
special linear group, etc.). The equivalence of linear codes is used in some cryptosystems
based on the theory of error-correcting codes (see [4, 6]).

This article outlines an efficient algorithm for computing permutation groups and de-
termining equivalence of linear codes. This algorithm combines two existing algorithms:
an algorithm of Jeffrey S. Leon [1, 2, 3] and the support splitting algorithm (SSA) of
Nicolas Sendrier [8].

1.3. Leon’s algorithm

Leon’s algorithm (LA) is practically the only algorithm for computing the permuta-
tion group of a linear code and determining equivalence of two linear codes. It is used
in such computer algebra systems like Magma and Gap. Let P be a property (ie., a
Boolean-valued function) on Sym () that is readily computable. LA computes the

set Sym (Q)p &ef {g € Sym(Q) | P(g)}. For instance, if Pc is the property such
that Pc(g) holds exactly when g € Perm (C), then LA computes Sym (R)p, =
Perm (C). :

LA employs backtrack search. It makes use of the concepts of base and strong gen-
erating set, developed by Charles C. Sims [10], to facilitate pruning of the search tree
associated with backtracking. In addition, it employs successive refinement of ordered

partitions, introduced by Brendan D. McKay [5], to facilitate choice of a smaller and

322 G. Skersys

more nearly optimal base and to allow more extensive pruning of the backtrack search
tree.

The method of refining the ordered partitions depends on a particular property P.
Apart from the other input parameters, LA accepts a property P and a set of mappings,
related to P, called P-refinements, that specify how to refine the ordered partitions. In his
papers [2, 3], Leon proposes sets of P-refinements for several properties P, among them
for the properties Pc and Pc,¢c' (Pc,c(g) holds exactly when C9 = C’). But his Pc-
and Pc,c-refinements are not peculiar to linear codes. They are destined to compute the
permutation group of a matrix and determine the equivalence of two matrices, respec-
tively (in p. 323 we describe how a permutation acts on a matrix). In order to compute
the permutation group of a linear code C, we must provide LA with a matrix W such that
Perm (C) C Perm (W). LA finds the permutations of Perm (W) and verifies if they
lie in Perm (C). In that way LA obtains Perm (C).

To construct such a matrix W, we may consider, for instance, the set of all codewords
of C, C* or H (C), the set of minimum weight (or constant weight) codewords of C,
C+ or H (C), the union of some of these sets, etc., and form a matrix W whose rows
are the vectors of such a set. But W must be “reasonably small” (small enough to permit
computation in a permutation group of degree n + m, where m is the number of rows of
W), and |Perm (W) : Perm (C)| must be very small. Given a large linear code C it is
difficult to compute such a matrix W. Therefore LA is limited to relatively small linear
codes for which one can “easily” find such a matrix, for example, in binary case (i.e.,
when the finite field is F; = {0, 1}) to the linear codes of length up to 100 or dimension
up to 50 — with a few exceptions.

1.4. The support splitting algorithm

On the other hand, N. Sendrier created an algorithm (the SSA) for determining if two
linear codes are equivalent, and finding the permutation between them if they are (see [8]).
The SSA only works if the permutation groups of the considered codes are trivial, that is,
reduced to the identity permutation. Note that in this case the permutation between two
equivalent codes is unique. Moreover, the hulls of the considered codes must be small,
for the SSA computes the weight enumerators of the hulls (for example, in the binary
case the dimension of the hull must be less than 20-30). This condition holds for most
linear codes since the average dimension of the hull of linear codes is a small positive
constant [7], but there exist some important families of linear codes in which many codes
have a big hull [11]. When both abovementioned conditions are satisfied, the SSA is
very efficient, for instance, it can determine the equivalence of two binary linear codes of
length up to several thousands.

By generalizing the SSA, we were able to construct sets of Pc- and Pcc'-
refinements for LA. This highly extends the domain of application of LA for the proper-
ties Pc and Pc,c, for example, now we can compute Perm (C) and find a permutation
g such that C¢ = C’ for two binary linear codes C and C’ of length up to several thou-
sands, provided that the hulls of C and C’ are small enough.

Computing permusation groups of error-correcting codes 323

2. Leon’s algorithm

In this section we will show by an example how LA works.

We begin by some definitions. Let 2 be a set of size n. A partition II of Q is a
collection of disjoint non-empty subsets of {2 whose union is 2. The elements of II
are called its cells. An ordered partition of Q is a sequence (IIy, IIy,. .., II;) for which
{11, y,...,IL;} is a partition. The set of all ordered partitions of {2 will be denoted by
PartOrd(Q). If I is a partition (ordered or not), the number of cells of IT is denoted by
|T1|. IT is called discrete if |[TI| = n. If |IT| + 1 < 4 < n, II; will denote the empty set.

We will need to compare the ordered partitions. For this we define an ordering. If
I = (II;,1,,...,II;) and ¥ = (X4,%y,...,Ln) are ordered partitions, we define
II < Stomean (1) |TI| > |2, @ II; C Z; fori < |X|, and 3) II;, i > |X], is
contained in some cell of X. If IT < ¥ and IT # X, we write IT < X and say that IT is
finer than X. :

We give the formal definition of a P-refinement.

DEFINITION 1. [2, Def. 8 and 3, Def. 9] If P is a property, a P-refinement E is a pair
(EL, ER) of mappings of PartOrd(f) into PartOrd(2) such that, for all II, ¥ €
PartOrd(Q2) and for all g € Sym (), the following conditions hold:

(a) E\ (TT) < IT and ER(IT) < IL.

(b) |EL(IT)| < |TI| + 1and |ER(TT)| < |TI| + 1.

(c) If P(g) and if I1¢ = X, then E| (IT)? = ERr(X).

Note [2, p. 542]. The subscripts “L” and “R” are formal symbols chosen to suggest left
and right, corresponding to the appearance of Ei and Er on the left side and the right
side, respectively, of the equation in (c) above. Note that (a) and (b) imply that either
E,(IT) = I or |E,(II)| = || + 1 for z € {L,R}; that is, each component of a P-
refinement either leaves IT unchanged or splits exactly one of its cells.

Thus, we can describe the action of a P-refinement by precising this cell and a part
of it which splits off. More precisely, if IT = (I, ..., II;) € PartOrd(Q),1 < i < n,
I’ C Q, then we define

(III,...,I'I.-_I,I'I.-\I‘,I'I.-+1,...,II;,1'I.- NI ifl<i<land
Fir(II) = pCI;NT ¢ 10,
II otherwise.

To simplify, we will only show how LA computes Perm (C) for a binary linear code
def

C.Let A = (ai;) be m x I binary matrix whose columns and rows are indexed by ¢ ‘=
{1,...,1} and Qr def {1+1,...,1+m}, respectively, upon which each permutation g of
QL 0cuag stabilizing (¢, r) acts by moving column 7 to column position 9 and
Tow j to row position j¢. Let n be the size of 2. Let P4 be the property such that P4(g)

324 G. Skersys

10101\]|6
10101 A=
G= 01110 01110)7
12345
T1(1,2,3,4,5|6, 7)—(1, 2, 4, 5|6, 7|3)~(2, 4, 5|6, 7|3]1)—(2, 4|6]3]1|7|5)—(4]6/31}7]5]2)
224,516, 7RI, aieiims G B =0
214,516, Ti81)~(1, siiaizieia) T LI D B
£(1,2,3,4,506, 7)—(1, 2, 4, 5/6, 7/3) SI7I3I4I6121)~ (1. 4.5.2)
N1, 2,516, Tisla)(1, si7ialale2) (Gl lle = 4 5. 2)
N1, 2,416, 7isis)—(2, aisiaisiTin GIERIETI B0 B

Fig. 1. An example of backtrack search tree with Leon’s refinements.

holds exactly when A9 = A. Leon proposes (see [2, §9(f)] and [3, Fig. 2] the set I4 of
Pa-refinements, where Ly = {(Ia,i,j,e» La,i,c) | 1< 4,5 < n,0 < e < n}and

.7-',-,5(1'1) where E = {E (3 Qc I Zpel'lj aue = c},
1f1'I, Cc Qc and Hj - QR,
Ta,ij,c(IT) = § Fia(TT) where A = {)\ € Qg | Epen,- ax = c},
if ITl; C Qrand IT; C Qc,
II otherwise.

Let C be a [5,2] binary linear code generated by the matrix G (see Fig. 1). We
form the matrix A from the minimum weight codewords of C (see Fig. 1). We index
the columns of A by 1,...,5, and the rows by 6 and 7. Ordered partition constants
will be written using simplified notation, illustrated as follows: the ordered partition
({1,5},{2}, {3,4,7},{6}) will be written as (1, 5|2|3, 4, 716).

We want to compute Perm (C). We compute Sym (), >,» and when we find a per-
mutation g € Sym (Q)p, , we verify if the projection g, . of g to Qc lies in Perm (C).

We will walk through the search tree of Fig. 1. As we progress in the tree the partitions
become finer and finer, until we reach the leaves labeled by discrete partitions. Note that
if ordered partitions IT and X are discrete we can easily recover g € Sym (§2) such that
v =x.

We begin with II = ¥ = (Qc,%) = (1,2,3,4, 5/6,7). Evidently, IT* =
Xforallg € Sym(Q)p, . We try to refine IT and X in such a way that this condi-
tion remains satisfied. For this we apply P4-refinements of I4 to IT and 3 (that is, we
apply the first component of a Py-refinement to IT, and the second to X) trying to refine
them.

We notice that I,1,2,2(IT) = F;,(3)(IT) = (1,2, 4, 5/6,7|3) < IT. We apply Isn,2
to both IT and 3 and we get new purtitions IT = ¥ = (1,2, 4,5|6,7|3) (the second
column of the search tree in Fig. 1). Note that IT* = X forall g € Sym (€2)p, because
of Def. 1(c). Then we try to apply other P4-refinements of I 4, but we cannot refine IT
and X any more.

Computing permutation groups of ermr-corrécting codes 325

- At this point we divide the computation of Sym (Q)p, into four cases: we fix one
point of §2, e.g., we choose 1 € §2, and we begin by computing all g € Sym (Q),, , Such
that 19-= 1, then all g € Sym ()p, such that 19 = 2,19 =4 and 19 = 5 (for any g €
Sym (), we have not 19 = 3, for 1 and 3 lie in different cells of II, and ITY = ¥ =
IIforall g € Sym (Q)y,). But, for instance, II9 = ¥ and 19 = 4 hold exactly when
Fry(ID)° = Fi(4)(X), that is, (2,4,5(6,7|3|1)° = (1,2,5/6,7|3|4). We get four
branches in the search tree (the third column in Fig. 1). We advance in the first branch:
IT and X become equal to F, (1)(IT) = Fy (1}(E) = (2, 4, 5|6, 7|3|1). We try again the
Pa-refinements of 14. We find that I4,2,4,0(IT) = Fy,¢73(IT) = (2,4,5/6/3|1|7) < IL
We apply J4,2,4,0 to both IT and X and we get now IT = X = (2,4,5|6|3|1|7). Then
we notice that IA,I,S,O(H) = .7'-1,{1,5}(]]) = (2,4|6|3|1|7|5) < IT, we apply IA’1'5,0
to IT and ¥ and we get new IT = ¥ = (2,4/6|3|1|7|5). We try to apply some more
Pa-refinements of I 4, but being unable to refine IT and £ any more we stop trying. Note
that we need not to try all P4-refinements of I 4. Usually we stop after a given number of
tries, because the set 14 is often too large.

Then we divide the search into two cases as above. At last we get two discrete parti-
tions IT and X (the fifth column in Fig. 1), from which we recover the identity permuta-
tion () that surely lies in Perm (C). Then we return to the fourth column in Fig. 1 and
we choose another branch, we get another permutation (2,4) € Perm (C), we return to
second column in Fig. 1, we choose another branch, we apply the same mappings I4 2 4.0
and I4,15,0 to B = (1,4,5|6,7|3|2), we get new X = (1,5(7|3|2|6]4), and so on. We
obtain all eight permutations of Perm (C).

Usually we want to find only a set of generators of Perm (C). There exist some
results, due to Sims [10] and generalized by Leon [2, Prop. 8], which allow us to prune
the search tree. After that we get a tree which gives only a particular set of generators,
called strong generating set. .

3. Support splitting algorithm of Sendrier

In [8] Sendrier introduces the notion of signature. Let Q) be a set of size n used to index
the coordinates of the vectors of F7, let C be an [n, k] linear code. A signature S over a
set F" maps a code C and an element i of € into an element of F and is such that for all
permutations g of €2, S(C9,i9) = S(C,). It is said to be discriminant for C if for some
iand j in 2, we have S(C, 1) # S(C, 7). It is said to be fully discriminant for C if for all
i and j distinctin €2, S(C, i) # S(C, j).

An invariant is a mapping V such that any two equivalent codes take the same value.
The mapping (C, i) — V(C(s)) is a signature.

Let g be a permutation of (2, let C’ = C? be a linear code equivalent to C, let S be
a signature fully discriminant for C. Then S is also fully discriminant for C’ and we can
Tecover g from the following remark: i¢ = j if and only if S(C, i) = S(C’, j).

If S is not fully discriminant for C, we try to get more discriminant signature as
follows: if T is a signature over H and L is a subset of H, then the mapping (C, i)

326 G. Skersys

(8(C,4), T (Cks,L(c)»3)) , where Ks,1.(C) = {j € Q| S(C,j) € L}, is a signature,
which is at least as discriminant as S for C. Hopefully, it is more discriminant than S,
and after a few such operations we obtain a signature fully discriminant for C, if it exists.

Note that there exists a fully discriminant signature for C if and only if Perm (C)is
trivial.

The weight enumerator of the hull of a linear code is an invariant, which is, for most
linear codes, easy to compute and discriminant [7). Sendrier proposes to use the signature
S constructed from this invariant:

8(C,i) = (W (1 (Cw)) . W (% ((c4) @))

4. SSA-based refinements
We generalize the notion of signature in the following way:

DEFINITION 2. Let C be an [n, k] linear code, let IT be an ordered partition of 2, let
F be a set, and let j € Q. A mapping R which associates II, C and j to an element
of F is called generalized signature over F if R (I, C9, j9) =R(IL,C,j) forall g €
Sym (Q).

Theorem 1 [11, §3.4). Lete € F, let1 < i < n. Let QCR,i,e be the mapping of
PartOrd(Q) into PartOrd(SY) defined by QcRr,ie(Il) = F; 3(IT), where ® = {j €
Q| R(ILC,j) = e}. The pairs (QcRs,es QcRoie) and (Qo,rie, Qor Rose) are Po-
and Pc,c:-refinements, respectively.

Let P and Q be generalized signatures. Then P, defined by PL(II,C,i) =
P(I,C+,i), and P x Q, defined by P x Q(II,C, %) = (P(I1, C, i), Q(I1, C, 1)), are
generalized signatures. Thus, R %' R x R is also a generalized signature. '

Let S be a signature over a set F, let IT € PartOrd(f), let L be a subset of
{L,...,n} and let j € Q. We introduce the generalized signature Tg ; defined by
TsL (ILC,5) =S (CUzez. o j) - For LA we propose the sets Q¢ and Q¢ ¢+ of Pc-

and Pc, ¢ -refinements, respectively, where

Qo = {(Qmri0QcTasie) ILC{L.cinh 1< i< e e z(x'},
o = {(tsie@otusie) I1LC 1< i < me e ZX)),

and S is defined in Eq. (1) (we take e from Z[X]* since Ts,. (I1, C, j) is a sequence of
four weight enumerators).

1

Computing permutation groups of error-correéting codes 327

I (1,2,3.4,9) = (.2,6,59) = (3,451 ~ @, 43015) = (s
2 (2,4,50311) — (2, ai3118) { (A13111812) = O

N (2[3]115[4) — (
/4 (1,4,513]2) — (1, 5]312]4)

2

S s 2o
T (1,2,3,4,5 = (1,2,4,53) z '
N (12,50319) — (1, sisi4i2) C (Bl = (i s)
/ (ai3is(12) = (1,5)

S @Risi1ia) — (1,5 4

’4)
’2)
,27
4

N\ (1, 2,41315) — (2,4(3[5]1)

Fig. 2. An example of backtrack search tree with SSA-based reﬁnemenis.

In Fig. 2 we give an example of backtrack search tree with SSA-based Pc-
refinements, where C is the same linear code as in Fig. 1. To simplify, we use Qc,Ts,Liie
with the signature S : (C, j) — W (H (C(;3)) . Since

1 ifj =1,2,4,5,
WM (Cw)) = {1+2X2+X4 ifj =3,

we pass from the first column of Fig. 2 to the second by means of the mapping
Qc,Ts 0,1,1+2X2+ X4 Likewise, since

1 ifj=1,2,4,
W (H(Cp,y)) = { 1+ X2 if;' =3,5,

weuse Qc,Ts. (s, 1,1+X2 topass from the third column to the fourth. The rest is performed
as in Fig. 1.

References

(1] J. Leon, Computing automorphism groups of error-correcting codes, IEEE Transactions on Information
Theory, IT-28(3), 496-511 (1982).

[2] J. Leon, Permutation group algorithms based on partitions, I: Theory and algorithms, J. Symbolic Computa-
tion, 12, 533-583 (1991).

{3] J. Leon, Partitions, refinements, and permutation group computation, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, 28, 123-158 (1997).

(4] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, DSN Progress Report, Jet
Prop. Lab., California Inst. Technol., Pasadena, CA, pp. 114116 (1978).

{5] B. McKay, Computing automorphisms and canonical labellings of graphs, Lecture Notes in Math., 686,
Springer-Verlag, Berlin and New York, pp. 223-232(1978).

[6] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Problems of Control and Infor-
mation Theory, 15(2), 157-166 (1986).

[7]1 N. Sendrier, On the dimension of the hull, SIAM Journal on Applied Mathematics, 10(2), 282-293 (1997).

[8] N. Sendrier, Finding the permutatiod between equivalent binary codes, In: /EEE Conference, ISIT'97, Ulm,
Germany (1997).

[9] N. Sendrier, and G. Skersys, Permutation groups of error-correcting codes, In: Proceedings of Workshop on
Coding and Cryptography, INRIA, Paris, pp. 33-41 (1999).

[10] C. Sims, Determining the conjugacy classes of a permutation group, In: Proc. of the Symposium on Com-
puters in Algebra and Number Theory, Amer. Math. Soc., New York, pp. 191-195(1971).

328 G. Skersys

(11] G. Skersys, Calcul du groupe d’automorphismes des codes. Détermination de I’équivalence des codes,
Ph.D. Thesis, Limoges University (1999).

Klaidas taisan¢iu kody keitiniy grupiy skaiéiavimas
G. Skersys

Darbe pristatomas algoritmas klaidas taisan¢iy kody keitiniy grupei skaidiuoti ir dviejy kody
ekvivalentumui nustatyti. Sis algoritmas remiasi J. Leono algoritmu ir N. Sendrier pagrindo dali-
jimo algoritmu. Jis labai efektyvus, kai kody sankirtos su ju dualiais kodais yra maZos.

