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1. Statement of the problem

We consider the output ff(n), n=..12...,N,..., of alinear discrete time r-
dimensional time-variant dynamic system, the input of which is the sequence of Gaussian
r-dimensional independent random variables V(n), n=...,1,2,...,N,..., withzero
mean and unit covariance matrix. The system satisfies stability conditions and its structure
is described by an autoregressive (AR) model

% (n) = —A1 ()X (n—1)— Az () X (n—2) —...— Ap(n) X (n—p) + B(n)V (n) (1)

where p is an order of the system; X(n) = (z1(n), ..., z+(n)T; V(n) = (u(n),...,
vp(n))T; T — a sign of transposition; A1 (n), .. ., Ap(n), B(n) are matrixes of dimension
r x r; det B(n) # 0. Parameters of the system Q(n) = (Ai(n),..., Ap(n), B(n)) at
unknown points of time u = (uy,...,upm), Y1 < uz < ...uy abruptly change their
values, but are constant and known between change points.

Let us denote

Q; =AY, . AD.B;), i=12,..,M+1,

where
" af6)... aG)\ - ¥?0... 0
AP = s s , Bi= | s -
ad(i)... () 0 0...b9
Then

Ql, n=...,1,2,...,u1
Q2’ n=u1+1,...;u2

Qmy={ i e (2)

............................
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Let us assume u; > p+ 1anddenote up =p+1, um+1 = N. The problem consists
in obtaining the estimates 4 = (41, .. ., %) of change-points u = (w1, ..,unm), using
realization X = (X (1),..., X(n)) of a random sequence X(n).

We will solve this problem using maximum likelihood estimate

d=arg  max LX), €)
p<uy <...<um<N

where L(ulf ) is logarithmic likelihood function of change points u = (u1y...,um).

2. Derivation of conditional distribution density of the observable random
sequence

To maximize the likelihood function L(u|X) we need to know the conditional distribu-
tion p(X |u).

Since input of the system (1) is a sequence of Gaussian r-dimensional independent
random variables (independent of ) with zero mean and unit covariance matrix and the
system (1) is linear, the conditional distribution density p(X|u) is also Gaussian.

We can also express p(X|u) in terms of conditional distributions

p(Xlu) = p(X(1), X(2),..., X (p))
N
< 11 p(X(n)|u, X(n - 1),..., X(1)). @

n=p+1

As output of the system (1) at time instant n depends only on p previous outputs

z(n —1),...,z(n — p), we can rewrite (4) in the form
p(Xl) = p(X(1),X@), ..., X))
N
x J] pXm)u,X(n-1), ..., X(n - p)).
n=p+1

Taking into account change points u and the conditionp < u; <uz... <upm < N
we have

p(XI'u) = p(X(l)aX(2),’X(p))
X H p(X(n)lu,X(n—1),...,X(n—p))

n=p+1

x ]‘[ p(X(n)u, X(n—1),...,X(n—p) x...

n=u1+1
N

x I »X@)wX@w-1),....X(n =) ©)

n=up+1
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Since p(X |u) is Gaussian distribution density, p(X(n)|u, X(n-1),...,X(n - p))
is also Gaussian distribution density with conditional mean

M(n) = E [X(n)lu, X(n—1),...,X(n —p))] (6)
and conditional covariance matrix
K(n) = E[(X(n) - M(n))*|u, X(n - 1),..., X(n - p))].
Taking into account (1) we can write (6) as
M) =-A(m)X(n-1)—...— Ap(n)X(n - p)
and

Yy
p()?(n)|u,X(n—-1),...,X(n—p))

e % X X '
B {’% (X(m) ~ M(m))"K(n)~ (X(n) — M ("))}’ @

where
(X(n) — M(n)) = X(n) + A;(n)X(n—1) +...+ Ap(n)X(n - p).

Using (2) we can denote

®20...0

K,=K = ...l , 8
j (n) Q=2 (00“.(&]‘))2) (8)
(@t K = @K H| =GO O

®%)20...0

Kj'1 =K(n)™! e T e

Q(n)=Q; 0 0... (bS_J))—2
and

R(n,j|1X) = (X(n) - M(n))

Q(n)=Q;
= Xn)+ APX(n-1)+...+ ADX(n -p). (10)

Then, substituting (7) into (5) and taking into account (2) and (8)—(10) we can write
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p(Xlu) = p(X (1), X‘<2>, LR () x (2m) =T

M+1 wioyy M1 w
x ] (det K;)™ <[] II R JIX)TK; R(n, 5| X). (11)
i=1 j=ln=uj_1+1

Taking the logarithm of the p(X |w), from (11) finally we have

log p(X|u) = logp(X(1), X(2), ..., X(p))

M+1

7'(N2 p) log (27) — 1 Z (uj —uj—1)log (det K;)
=1
M+1 uj
=1 n=uj_1+1

3. Remark

For the given realization X of the random sequence instead of maximizing (12) we can
maximize objective function 6(u|X ), which differs from (12) by an additive constant not
depending on u, i.e.,

i = arg max log p(X|u) = arg max e|X), (13)
p<u1<...<upm<N p<u1<..<upm<N

where
0(u|X) = Li(w|X) + Lol X) + ... + Las(una| X). (14)

Each of the functions L,-(uil)-(‘ ), 4 = 1,2,...,M depends only on one variable,
corresponding to unknown change point u; and can be expressed as

det K;11
det K;

—R(n,i|X)TK'R(n,i|X)], i=1,2,...,M, n=p+1,....,N (I5)

Li(n|X)=Li(n — 1| X)+log + [R(n,i + 11 X)TK;  R(n,i +1|X)

with initial conditions L;(n|X) =0, i=1,2,...,M.

4. Maximization of the likelihood function

The function ©(u|X) as well as the function L(u|X) is defined only for discrete time
arguments and one possible way to find location of its global maximum is full search in
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M dimensional space, restricted by the conditionp < u; < uz < ... < upy < N.
Amount of computations using full search is of order N™. Such amount of computation
is not acceptable in  many practical applications. Therefore an effective search algorithm
is needed for ©(u|X) maximization.

Since the function ©(u|X) is sum of partial functions Li(w|X), i =1,2,...,.M
and each of these partial functions depends only on one variable, we can use the dynamic
programming method (Bellman, 1957) to determine location of the global maximum of
this function. ,

Dynamic programming method is rather the methodology than the method. The prin-
ciple of optimality, which is the basis of a class of computational algotithms for the above
optimization problem, according to Bellmam, is “An optimal policy has the property that,
whatever the initial state and decision are, the remaining decisions must constitute an op-
timal policy with regard to the state resultinz from the first decision”.

Maximization procedure fully depends on restrictions in the range of the maximiza-
tion variables. In qur case the restrictions are

p<u;<uz<...<upy < N.

Let us begin from maximization of L, (u;|X), p < u; < up. We can see that max-
imum of L; (u;|X) depends only on u5 . So we can define the function g1(uz|X) such
that

91 (ug|X) = max Ly(uplX), up=p+2,...,N

p<u;<uz

We can see that the global maximum of the of the function g; u2|X ) (and also of
the function L;(u;|X)) depends only on uz (one variable) for all possible values of
U3, Uy, - . ., UM, satisfying the conditionus < uz <ug < ... < up < N.

Now let us maximize Ll(uilf) -l-_Lz(ﬁle), P < u; < uz < us. We can see that
maximum of Ly (u;|X) + Lz (uz| X) depends only on u3 . So we can define the function
92(u3|X) such that

92(u3| X) = max [La(usX) + g1(uz| X)), us=p+3,...,N.

P+1<uz<us

The global maximum of the function 92(u3)X) (and also of the function Ll(u1|X ) +
Ly (’U,2|X )) depends only on u3 (one variable) for all possible values of Ug, U, ..., UM,
satisfying the condition ug < uy <wug <...<up < N.

Similarilly we can maximize the function (Lipeika, 2000)

Ly (u1) X)+La(ua) X)+. . +Li(wiX), p<ur<ug<us<...<w<uip
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as the maximum of L, (u;|X) + Lg(Ung) +...4 Li(u;| X) depends only on u;4; . So
we can define the function g;(u;+1]|X) such that

gwinlX) = max  [Li(wilX) + gima (wil X)),
pHi—1<ui<uis: (16)
Uip1 =p+i+1,...,N.

The global maximum of the function g; (u;41|X) (and also of the function Ly(uy | X+
Lo(ug|X) + ... + Li(us| X)) depends only on u; 4 (one variable) for all possible values
of uiy2,ui43,. .., up, satisfying the condition Uil < Ujp2 < Uip3 < ... <upy < N.

For maximization of

O(u|X) = Ly (wa|X) + Ly(ug| X) + ... + Lag (up| X)
we have

gm(upn|X) = max [La(um|X) + grr-1(um| X)),
' pM-1<up <upmpr an
UM41 =p+M+1»,N’

where up41 is an additional variable, which means the possible length of the available
realization of the random sequence. Sit:ce the length of the realization is N, the value
gm(N|X) is the global maximum of the ©(u|X). The functions g; (n|X) are not de-
creasing functions with respectton =p+1,..., N.

The maximum likelihood estimate & = [d4, 4y, ..., @) of the change points u is
obtained in the following way

iy = min [arg max gk(n|)?)], k=M,M-1,...,2,1, (18)
ptk<n<ie

where, for convenience, we made a notationips4; = N.
For further reduction of computation amount, we can compute the functions
gi(uin1|X), i =1,..., M recursively

91(u2)X) = max [g1(uz — 1|1X), Li(ug = 1|X)], w2 =p+3,...,N

with the initial condition g1 (p + 2| X) = Ly (p + 1| X).
Andfori=2,...,.M

i(ui41) X) =max {gi(ui+1. - 1|5(‘), [9i-1(wit1 — 1 X)+Li(uips — 1|X)]} )
Uip1=p+1+2,...,.N

with the initial conditions

gip+i+1X) = Lip+ilX)+ ga(p+ilX), i=2,..., M.
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It is interesting to note, that by assuming B(i) = I, i = 1,2,..., M +1 (unit matrix)
and using the same optimization method we obtain least square (LS) estimates of change
points u = [uy,us, ..., un|. This solution enables to reduce amount of computations
from the order N™ (full search) to the order N x M (dynamic programming), where N
is a length of an observable random sequence and M is the number of change points in
this sequence.
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Daugiamaciy autoregresiniu seku segmentacija
A. Lipeika, J. Lipeikiené

Darbe nagriné¢jama daugiamatiy autoregresiniy seky segmentacija naudojant maksimalaus
tikétinumo jverti, Pasiiilytas efektyvus tikétinumo funkcijos maksimumo paieskos biidas.



