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On the closeness of lattice distributions
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Let £ and 7 be two independent lattice random variables concentrated at non-negative
integers and having distributions F' and G, respectively. Let denote factorial cumulants
of £ and 7 by

o0

ve= Y m(m—1)..(m—k+1)P(¢ =m),
m=0

i = Z m(m —1)...(m — k+ 1)P(n = m).
m=0

Let vk, k = 1,2,. .. denote factorial cumulants of £.

Let Sp = &1+&+...+&n Zn = m+n2+. . .47, Here €1, - . ., &n are independent
copies of &; 71,. .., 7y are independent copies of 7. Note that the distribution of Sp is
F*™. Here by F*" we denote the n-fold convolution of F.

The closeness of S, to Z,, is usually measured in total variation

IF*™—G™ | = 3 | P(Sy = m) - P(Zn = m)| M

m=0

or in weaker uniform Kolmogorov distance

| F*» — G*" | = sup | P(S, < z) — P(Zn < ). @

We shall review some approaches to estimating F*™ — G*" in distances (1) and (2).
Obviously,

' n—1
F*™ _G* — Z F*m x gr(n-m-1) , (F — G) ‘ (*)

m=0

This form implies that we must take into account the smallness of F — G and possi-
ble smoothing effect of convolution F*™ x G*("~™=1)_ Further on we denote by C the
generic constant which can vary from line to line, whereas the constant C(s) depends
on s.

* AMS subject classification 60 F 10
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1. Le Cam’s operator approach

The most general approach for estimating the difference F*" — G*™ was introduced by
Le Cam in [7]. However, the effect of convolution was ignored. Let, for some fixed s 2> 2,
Vg =pr,k=1,...,8—1and vs + s < 00. Then

| F*" = G < s+ )2/, ®

Estimate (3) follows from the general results of [5]. Obviously, it is non-trivial for v, +
ps < Cn~1 only. Such an assumption is very restrictive and leaves out the scheme of
sequences (i.e., the case where F’ and G do not depend on n) completely.

2. Franken’s condition
We say that random variable £ satisfies Franken’s condition (F) if
n—vi-v>0. (F)

Note that Franken’s condition ensures the smallness of the characteristic function of &
outside the neighbourhood of zero. Originally introduced by Franken in [6], condition
(F) was used in many subsequent papers. Let, for some fixed s > 3, vk = px, k =
1,...,8—1, v, + ps < 0o and let £ and 7 satisfy Franken’s condition (F’). Then

| F*™ — G™ | < Cls)n(ws + o) min (1, (1 = 1 = 1) "=/, @)

see [11]. Similar estimate holds for the total variation norm. Comparing estimate (3) with
estimate (4) we can see the benefits of condition (F'). Indeed, all v, and px might not
depend on » (the classical situation when CLT holds), but even in this case the right-
hand side of (4) is of the order n—(*=2)/2, What are the main drawbacks of the Franken
condition? The set of distributions satisfying (F') is not very large. If £ satisfies Franken’s
condition, then v; =E£ < 1. Moreover, v; < v;. In terms of probabilities, this means that
all probabilities, appart from P(§ = 0) and P(¢ = 1), are small. The simplest example
of ¢ satisfying (F) is the Bernoull; variable.

3. Statulevi&ius condition (5)

We say that ¢ satisfies condition (S) if, for some A > 1,

k! .
%l < g k=23, )

Obviously, condition (S’) is the laEtice analogue of Statulevi€ius condition (S) for cumu-
lants. For approximations under (.S) see [1, 3, 4, 12] and references therein. Condition (.S)
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usually appears in papers on large deviations. However, it also can be applied to integral
estimates, see [12]. If A is sufficiently large, condition (S) ensures the smallness of the
characteristic function outside the neighbourhood of zero, i.e., works just like Franken’s
condition (F). Let, for some fixed s > 3, vx = px,k =1,...,8— 1 and let £ and 7
satisfy (5’) with A > 5. Then

| F*™ — G*™ | < C(s)n(vs + p,)(uln)_s/z. )
Indeed, A > 5 ensures that
| F(t) |, G(t)| < exp{—(2/3)v1sin%(£/2)}, ©6)

see [12, formula (2.22)]. Here F (t)and G (t) denote the characteristic functions of F' and
G, respectively. Moreover,

| F(t) - G(2)| < (vs + po)2°| sin(t/2) |*/2/s!. ™

To get (7) one should use estimates (5) and (6), identity (*) and Tsaregradskii’s inequality.
" Asshownin [12], to some extent Franken’s condition can replace (5’) and vice versa.
Of course, these conditions are not equivalent (note that (S') requires the existence of all
finite moments and just two moments suffice for (F') to hold). In general, both conditions
ensure that F*™ is close to some (probably centered) Poisson law — see [12].

4. Approximation when conditions (F) and (S) are not satisfied

The main result of this note is to show that F** and G*™ can be close even if both
conditions (F) and (5‘) fail. To prove this we utilize one result of Barbour and Xia [2]
about the total variation distance between S,, + 1 and S,,. Unlike Babour and Xia we
do not use the Stein equation and need no information about the concrete structure of G.
Let E; denote degenerate distribution concentrated at 1, E denote degenerate distribution
concentrated at zero. Obviously, the distributionof £ + 1 is F x F;. Set

u=1-|FxE1-F|/2, u2=1-|GxE-G|]/2 ®
As follows from Proposition 4.6 [2], for any natural k,
| F** + (B, - E) || < 2(ku1) ™%, ||G™* % (E1 - E) || < 2(kug)™ /2. (€)

We assume that the right-hand sides in (9) are infinite, if u; or u3 equals zero. Combining
Le Cam’s approach with (9) we obtain the following general result.

Theorem. Let, for some fixed s 2> 2, v = pr, k= 1,...,8 — 1, vs + ps < 00 and
n > 6(s+ 1). Then

I F* = G™ | < (v + a)n™ D2 (up /2 40y */?) (126)"/2 /! 10
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Proof. Set v(n, s) = [[n/2]/s]. Here [a] denotes the integer part of a. From the equality
of moments we get the following expansion in distributions

F—G=Wx(E—E)*(v, + ps)/s, 11

where W is a finite measure satisfying || W || < 1, see [5]. Taking into account (*), (9),
(11) and the properties of total variation norm (see, for example, [5]) we get:

n—1
" F*n _ g™ ” - Z F*™ x G*(n—m=1) (F _ G) ”
m=0
n-1
< D IF ™G Dy (F - @) |
m=0

<n(I P23 x (F-G) ||+ |62 (F - G) )
<n(ve/s!+ pa/s) (| P13 (B~ E)* || + | G/ x (B, ~E) |
n(u,/s!+u,/s!)(|| Fro(ns)], (El—E) ”-a +] Grv(ne) (E,—-E) ”u)

2°1(va /3! + pa/81) ((v(n, sYur) /2 + (u(n, 8)uz)~*/2)
(Vs + pa)n =D/ (u7*/2 4 47 */%) (125)5/2 /!

N NN

In the last inequality we used the following estimate
v(n,s) 2 [n/2]/s—12n/(28) —1/s—1 > n/(3s),
which follows from n > 6(s + 1). This completes the proof of (9).

REMARK 1. Note, in the case of unimodal distribution F, we can use the following esti-
mate:

u 21— mg.xP(& = k).

EXAMPLE. We shall exemplify Theorem assuming that 7 has the geometric distribution
(i.e., Z, has the negative binomial distribution). The negative binomial (and, particularly,
the geometric) distribution attracts a lot of attention. Firstly, it naturally appears as one
of aggregate claims distributions in risk theory, see [9], and algorithms are developed for
its computation, see [8]. The geometric distribution also is used to approximate Polya
distribution, see [10]. Therefore, from the practical point of view the negative binomial
distribution is certainly acceptible. Secondly, from the theoretical point of view the nega-
tive binomial (and geometric) distribution is infinitely divisible and is one of the simplest
compound Poisson distributions. Indeed, let 77 have the geometric distribution, i.e., let it
have the characteristic function:

G™Mt) =p/(1-ge™), ¢<1/2, p+g=1. (12)
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Then
_exp{ Z q 1tm }

Expanding G (t)andIn G (t) in the powers of (e** —1) we establish that factorial moments
and factorial cumulants of 7 equal, respectively,

k k
k!(3> and (k-1)!<3) , k=12,
p p

It is easy to check that Franken’s condition (F) implies that ¢/p < 1 /3. Formally the
Statulevi&ius condition (5) requires ¢/p < 1 only. However, in applications, the usual
requirement would be at least ¢/p < 1/4.

Let ¢ be concentrated at 4 points and have the following distribution:

P(¢ =0)=20/45, P(¢=1)=18/45,
P(¢=3)=5/45 P(¢=6)=2/45.

Consequently,
F(t) =1+ ("~ 1)+ (e" - 1) + (¢ — 1)* + ] & — 1]4/3. (13)

Here |0] < 1. Itis easy to check that v; = 1. Consequently, Franken’s condition (F) is
not satisfied. Moreover, v, = 1/2. Therefore, condition (S) is not satisfied too. However,
it is easy to check that

up = 1~ (20/45+ |20/45 — 18/45| + 18/45 + 5/45 + 5/45 + 2/45+ 2/45)/2
= 18/45. (14)

Let 7) have the geometric distribution defined by (12) withp = ¢ = 1 /2. Again, we see
that conditions (F) and (.S) are not satisfied. Moreover,

Gt) =1+ (" —1)+ (" —1)2+ (e —1)3 + 61]et — 14 (15)

Here [61] < 1. The quantity u, can be easily computed for any geometric distribution,
because || G * E; — G || equals to

P+ p(1-q)+pg(1—q)+pg*(l—r)+pg*(1—q)+
=p+p*(l+g+¢*+...)=2p.

Consequently, in our example,

up=1-p=1-1/2=1/2. (16)
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Combining (13)—(16) with the statement of the Theorem we get the following corro-
lary.

COROLLARY. Let £ and 7 be defined as in example above. Then
| F** —G*™|| < Cn~L. 17)

REMARK 2. In our example, s = 4. By conditioning, Theorem can be applied when
n > 6(4+ 1) = 30 only. However, if n < 30, estimate (17) follows from the fact that the
left hand side of (17) is less then 2.

REMARK 3. Inourexample F' and G do not depend on n. Certainly, in this case, one can
apply the central limit theorem. However, the result will not be as good as estimate (17).
Firstly, the normal approximation holds in uniform (thus weaker) distance only. Indeed,
the total variation norm of the difference of any continuous and any discrete distributions
equals 2. Secondly, for obtaining the same accuracy, one should need one member of
asymptotics. Thirdly, even then the estimate can not be expressed as absolute constant
(which does not depend on F' and G) multiplied by n—1.

REMARK 4. In practice, the more important case is when S, is the sum of independant
not identically distributed variables. In principle, some analogue of Theorem also can be
obtained for this case. However the estimate then becomes very cumbersome.

References

[1] A. Aledkevitiené, V. Statulevitius, Large deviations in power zones in the approximation by the Poisson
law, Uspekhi mat. nauk., S0(5), 64-82 (1995) (Russian).

[2] A.D. Barbour, A. Xia, Poisson perturbations, ESAIM: Probability and Statistics, 3 (1999).

(3] A. Bikelis, A. Zemaitis, Asymptotic ex.ansions for probabilities of large deviations, Normal approximation,
Liet. Matem. Rink., 16(3), 31-50 (1976) (Russian).

[4] A. Bikelis, A. Zemaitis, Asymptotic expansions for probabilities of large deviations, Application of Probab.
Theory and Math. Statist., 3, Vilnius, 9-39 (1980) (Russian).

[51 V. Cekanavitius, Estimates in total variation for convolutions of compound distributions, J. London Math.
Soc., 58(2), 748-760 (1998).

[6] P. Franken, Approximation der Verteilungen von Summen unabhingiger nichtnegativen ganzzahliger Zufal-
grosen durch Poissonsche Verteilungen, Math. Nachr., 27, 303-340 (1964).

[7] L. Le Cam, On the distribution of sums of independent random variables, In: Bernoulli, Bayes, Laplace
(Anniversary volume), Springer-Verlag, Berlin, Heidelberg, New York, 179-202 (1965).

[8] H.H. Panjer, S. Wang, Computational aspects of Sundt's generalized class, ASTIN Bull., 25, 5-17 (1995).

[9) H.H. Panjer, G.E. Willmot, Models for the distribution of aggregate claims in risk theory, Transactions of
Soc. Actuaries, 36, 399-452 (1984).

[10] M.J. Philips, G.V. Weinberg, Non-uniform bounds for geometric approximation, Statist. Probab. Lett., 49,
305-311 (2000).

{111 J. Siaulys, V. Cekanavitius, Approximation of distributions of integer-valued additive functions by discrete
charges I, Lithuanian Math. J., 28, 392-401 (1988).

[12] P. Vaitkus, V. Cekanavidius, On a centered Poisson approximation, Lith. Math. J., 38(4), 391-404 (1998).



470 V. Cekanavifius

Apie gardeliniu skirstiniy artuma
V. Cekanavitius

Gautas bendras pilnosios variacijos sveikaskaitiy skirstiniy skirtumo jvertis, galiojantis net ir
tuo atveju, kai Frankeno salyga nepatenkiuia.



