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1. Introduction

There have been many attempts in recent years to describe the population mortality expe-
rience in each age interval by the means of small number of parameters. Best way to
do that is to find an appropriate parametrical model, fitting empirical survival function.
During last century a big variety of such models were developed. Most of these models
were designed to fit the mortality in older ages, so reasonably can be treated as models
of senescent mortality. Aim of this study was to test some families of parametric survival
functions on Lithuanian 1988 — 1996 years mortality data. Both overall and cause specific
partial survival functions were fitted in order to find best approximations for all causes
of death mortality (ALL), mortality from cardiovascular diseases (CVD), mortality from
cancer(CAN) and for mortality from external causes of death (EXT). Five families of
survival functions were analysed, which, of couse, doesn’t embrace all great variety of
models, developed in recent years. Nevertheless, this work should be viewed as one more
effort in the framework of complex analysis of survival functions.

2. Models

Population age specific mortality can be described by the survival function

S(t) = exp [— j ,,(T)df], M

(1]

there 4i(t) denotes the force of mortality at age t, or, in terms of reliability theory, the
hazard or intensity rate. Cause specific partial survival functions are defined as follows:

S.(t) = exp [— / pe(T) df],

0
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there p(t) denotes the cause specific force of mortality. Consider five families of survival
funtions:

S1(¢) =exp [-A®)], Sa(t)=[1+A@t)] 7", Ss(t)=exp [1-exp (A(t))],
2]
S4(t) = [1 + PZA(t)]—;“I, S5(t) = exp [— 10—;2—0 ((1+1—F126A(t)) —1)].

First three families, named Weibull, Logit and Bajen are described in Slimen [1]. Last
two ones are mixtures of Weibull family — Gamma mixture and mixture, described in
Hougaard [2]. There A(t) is generated by one of nine transformations:

A1(t) = exp [ + Blog(t)], As(t) = Ay [ﬁ] ,

tk— ¢k
As(t) = exp [a +p T ],A4(t) = exp [a + Blog (log(1 + t"))],

As(t) = exp [a + Blog(e*t — 1)] , Aes(t) = A4 [ﬁt_—t] ,

Ar(2) = As [ﬁi_—t] As(t) = As [ — t], As(t) = —Qlog [1-33:,',;_11],

where0 < 6 < 1,02 >0,0,8>0,H >t,k>0,Q >0andy > 0 are parameters and
t denotes the age. Let

Smk(t) = Sm (Ax(t)) @

to denote the model from m-th family, generated by k-th transformation. Survival func-
tions, generated by (2) formula give a good fits in older ages. They also are useful when
modeling cause specific partial survival functions from the causes, prevailing in senility
and having small numbers of death in early childhood (CVD, CAN). When fitting all
causes survival function two additional parameters were added to fit mortality in early
childhood [5].

S(t) = (1 +02M)"FSpi(t), 02>0, A>0.

3. Estimation

Distribution of numbers of death mn; in age group [t;,¢,41) can be approximated by a
Poisson random value with parameter n;g;, where n; denotes number of living at the
beginning of age interval [t;, ¢,41) and g; — probability to die, determined by model. So
it is meaningfull to evaluate parameter values by minimising likelihood ratio logarithm:

N
log(L) = Zij log (:1—;) - m; + n;q;, ©))
A

i=1



488 R. Senkuviené

where N denotes number of age groups. When model is true, population estimates n;
correct and N — oo, '

log(L) ~ x*(N —n),

where n denotes the number of parameters evaluated.

In order to asses overall quality of approximation (joint over 88 — 96 years) one more
optimization function was used. Substantiation of this function lays upon assumption
that values of empirical probability to die in j-th age group at i-th year §;; are distributed
nearly identical over years (since the time period from 1988 to 1996 year is too short
for big changes in population numbers or in mortality). If §;; distributes independently
with the same mean and population numbers in each age group remains unchanged over
years and equals to n;, then distribution of gji is asymptotically normal. Then all these
assumptions are hold,

9(G;. — g,)2
& ._.Ess(éji -4;)?

when n; — co. There F(1, 8) is a Fisher’s distribution with 1 and 8 degrees of freedom,
g;. = % ?:ss dji — mean empirical probability to die in j-th age interval and gj - pro-
bability to die in the same age interval, given by model. Mean of F (1, 8) equals to g. So,
when optimization functional is defined as:

6 N
Qn=m;/~’j, )]

it should be expected tend toward 1 when numbers of deaths in each age group increases.

In practice numbers of death are too small to give satisfactory approximation of the
p; by F(1,8). Moreover, population numbers are influenced by measurement errors and
influence of other factors are ignored (reason why (3) optimisation function is not very
usefull when errors arrising from other sources in some age groups are much bigger
than errors from Poisson distribution). In order to obtain an approximate insight of how
values of Q,, is distributed and which values of it can be treated as showing satisfactory
approximation, some simulation procedure was used. New samples (g7,,. .., gjo) were
drawn randomly (with returning) from the actual sample (Gjsss-- s djoe) and then the
empirical 5% upper bound of function’s

Q=2 9@ - §;)?
T (N-nm &4 8

) ©
i=1 ; (45 — 4;.)2

distribution was calculated. Such simplification of ordinary bootstrap procedure was per-
formed, since “bootstrapping” the Q,, for each nonlinear model requires too much com-
puter time resourses.
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4. Results
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The results of approximation of the Lithuanian total 88-96 years mortality by function,

defined in (2) are presented in tables:

Qn valuesformales | ALL CAN CVD EXT
A 1829 661 559 839

Az 260 637 121 842

As 226 427 101 682

As 1926 661 565 855

As 258 493 125 678

As 234 390 106 820

A7 262 644 123 854

As 244 477 105 685

Ao 265 497 123 745

Q. 5%upperbound | 209 465 3.18 296
Qn values for females | ALL CAN CVD EXT
Ay 2795 442 1252 627

Az 277 423 207 507

As 258 293 219 334

A4 2828 446 1266 6.05

As 957 295 224 290

As 202 293 210 323

Az 277 427 208 512

As 260 294 209 278

Ag 513 320 229 355

Q. 5%upperbound | 216 320 228 190

Note that although fifth family of survival functions, having largest number of para-
meters and including first, second and forth families as partial cases gives best approxima-
tions in most cases, attempts to fit models with less number of parameters is meaningfull
in order to avoid hyperparametrisation. Fo example, best fit of cancer mortality for both
males and females is given not by Sse, but by Sy model (values 3.90,2.93 and 3.86,2.89,

respectively).
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Fig. 1. Minimum, maximum and average empirical values for Lithuanian 1988—1996 year’s survival and mor-
tality functions and predictions from model S(t) = (1 + Ao2t)=? > Sx3(t), fitted to the same data. For
males(females): o2 = 376(475), A = 0.042(0.003),6 = 0.08(0.29), p? = 341(85), & = —13.3(—5.2),
B = 0.585(0.003), k = 1.25(2.18)
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Lietuvos gyventoju mirtingumo pagal prieZastis aproksimavimas
parametriniais modeliais

R. Senkuviené

Lietuvos gyventojy 1988 — 1996 m. mirtingumas pagal pagrindines ligy klases (kraujo apy-
takos sistemos ligos, piktybiniai navikai bei iorinés mirties prieZastys), o taip pat bendras mir-
tingumas buvo aproksimuoti parametriniais i§gyvenamumo funkcijy modeliais. Modeliy palygini-
mui bei aproksimacijos kokybés jvertinimu : pateiktos lentelés su kokybés funkcionalo minimumo
reik§mémis.



