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On zeros of the Lerch zeta-function. III
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1. Introduction

Let s = o + it be a complex variable. The Lerch zeta-function L(), @, s), for ¢ > 1, is defined
by the following Dirichlet series

el e2miAm
LA a,8) = ZO (m+a)s’

where A, a are real numbers, 0 < a < 1, and by analytic continuation othervise (see [5], [6)).
Further we suppose that 0 < A < 1.
In [4] A. Laurinéikas for the function

oC
Z(s.)) = Z e¥MAMm s — e2MAL(N 1)5), o> 1,
m=1

A=a/q.(a.q) =1,0 < a < g, obtained the following zero-distribution rezults.

Theorem A. Suppose that q is a prime number. Then there exists a constant ¢ = ¢(A) such that
for sufficiently large T the function Z(s, X) has more than cT zeros in the region

c>1, |t|<T.

Theorem B. Suppose there exist at least two primitive characters modulo q. Then for any
01,02, 1/2 < 01 < 09 < 1, there exists a constant ¢ = c(A,01,02) > 0 such that for suf-
ficiently large T the function Z(s, X) has more than cT zeros in the region

o) <o<o0og, !t'<T.

By A7 (A, a:a,b) we will denote the following assertion: For any 01,02, a < 03 <09 < b,
there exists a constant ¢ = c(A, @, 01,02) > 0 such that for sufficiently large T the function
L(A, @, s) has more than ¢T zeros in the rectangle

01 <0 <oy, It < T.
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In [1] for the Lerch zeta function the following results were obtained.

Theorem C. Let a be a nonrational number. Then there exists 6 = 6(\,a), 0 < § < a, such
that the assertion At (A, ;1,14 6) is true.
If a is a transcendental number, then we can take 6 = 0.6a.

Theorem D. Let o be a transcendental number. Then the assertion At (A, o; 1/2,1) is true.

Let N(\, a,0,T) denote the number of zeros of L(A, e, s) in the region {s|Res > 0,0 <
Ims < T}. In[2] itis proved that

L\ a,s)#0, for ¢2>1+a. 1))

In this note we investigate the uper bounds for the number of zeros of the Lerch zeta function.
Let B,, denote a number bounded by a constant depending on 7.

Theorem 1. Let1/2 < 09 < 1+ a, then

1+a T
/ N\ a;0,T) do = ooTloga+/logIL()\,a,ao-i-it)' dt
0

oo

+ BlogT, T — oo.

By {(s, &) we denote the Hurwitz zeta-function, i.e.

(s, @) = Z(m+a o> 1,

m=0

where 0 < o < 1.

Theorem 2. Let o > 1/2, then for any fixed 1/2 < 01 < 0 and T — oo, we have

log(a?71¢(20,,

; <
N0, T) < L2

Np R(o1,T),
where

By, T?7291  for -;— <o <1,

By, logT  for oy > 1.

R(0y,T) =
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2. Lemmas

We will use a lemma of Littlewood [7, §9.9]. Let () is a meromorphic function on the rectangle
D with vertices a+10, 8+10, 8+iT, a+iT, and let (s) be regular and nonvanishing on the line
o = 3. Then ©(s) be regular in some neighbourhood of the line T’ = . In this neighbourhood
we define a function F'(s) = log ¢(s), by choosing some branch of the log ¢(s). On other points
of the rectangle we define F(s) by continuation of the log(8 + it) left from 8 + it to o + it. If
a zero is reached, we use

F(s) = 51_1.1110 F(o + it +i¢).

Let v(o’, T) mean a difference between a number of zeros and a number of poles of (s) in
arectangle o’ < 0 < 3,0 < t < T. Then we have the following lemma.

Lemma 1.
B8

/F(s) ds = —2m'/z/(a, T) dla

a

where the integral on the left we take around the contour of D.
Lemma 2. For any 09, 0 > 0, we have
L(\ a,s) = Byt|*.
where k = k(0op).
Lemma is proved in [2].

Lemma3. Let 0 > 1/2. Then, forT — oo,

T
/[L(A,a, s)|* dt = ¢(20,a)T + (0, T),.
0

where
2-20 1
B, T , for 3 <o<l,
r@T)=19 B,logT, for o=1,
B,, for o> 1

For the proof see [4].
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3. Proofs of theorems

Proof of Theorem 1. Let 01 > 1+ « be arbitrary large number and be not an ordinate of the zero
of the L(), o, s). Then from Lemma 1 and (1) we have for 1/2 < 0o < 1 + o that

4o
27r/N(aT)\a)da—/log|L)\aa’o+zt|dt

o1
—/log|L()\,a,01 +it)| dt+/argL(a+iT) do + K(oo,01)
0 0]

= Il +12+13+K(0'0,0’1)

where K (09, ;) does not depend on T..
First we evaluate the integral I5.

Rad e2midm
I = /108 _0'—“(1“"2 _i'_)al+u> dt
1
e21riAm
= —alTloga-i—/log 1+Zm dt = Iy + Iz. (2)
0 m=1 a

It is clear, that there exists 0’ > 1 + a, such that a modulo of the sum in J25 is less than | for
o1 > o’ and t € R. For such o; by the Maclaurin formula we obtain

T oo ) i n
_ (_1)n—1 e2miAm
oz = /R< [ o\ @) | ) 4
a
e27ri/\(m1+m2+...+m,,)

0o (—1)"_1 00 «00 00
= ReZ—n— Z Z Z ((mn+g)(mz+g)m(mn+a>)ax

«

<(’"1 +a)(mz+a)... (mn +a)>u dt
=B %(2 (mia)u,>ﬂ'. .

We can choose o big enough such that

oo o o
Z (m+a) <l

m=1
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From this and (3) we have that
I = B,
and from (2)
I = —01Tloga + B.
Now it remains to estimate the I3. We define two functions
®(s) =e'TlBaL() a,s), ®y(s) =e'Tl8aL(1 - ) q, s)

Then
oy
I; = /arg ®(oc +1it) do — (01 —00)Tloga. (4)

ao

Itis easily seen that the leading terms of the Dirichlet series for ®(s) and ®,(s) are positive at
s = o1+1T. Denote by g the number of zeros of Re ®(s) on the interval J = (00+1T, 0y +4T),
and divide J into at most q + 1 subintervals in each of which Re ®(s) is of constant sign. Then
the variation of arg ®(s) does not exceed 7 in each subinterval, and we obtain

oco+iT

|arg@(s)| " | <@+ 1) | )

o1+iT

To estimate g we set

f(z) = %(cb(z +iT) + &, (z +1T)).

First we note that f(z) is an entire function, and if z = o is real, then
f(o) = Re®(o + T). (6)

Let n(o) stand for the number of zeros of f(z) in the disc |z — o1l <o, andletr = 2(0y — 00),
ry = r/2. Then, clearly,

r

/@ do> nm)/ﬁ = n(ry)log2,
0 e T1 ¢

and the well-known Jensen theorem yield

1

27
1 i
n(ry) < 27r—log§/loglf(re 9+01)| do - @log]f(al)l. N
0
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By (6)

1 o e2miam

f(al) =Re (a"l a"l (0_+_ al+zT) -Tl ao'l Z (_‘l'_)dx :

m=1

For sufficiently large oy this is > 1/(2a)°1, say. Hence and from (7), using Lemma 2, we obtain
that

n(ry) = BlogT. ®)
By (6), the number of zeros of Re ®(s) on J is equal to the same number of zeros of f (2)
on (0o, 01). By the definition (09, ;) is contained in the disc |z — 1] < r1. This, (8), (5) and
(4) show that
I3 = —(0y — 00)Tloga + BlogT.

The theorem is proved for T is not an ordinate of the zero of the L(), a, s). For others T
theorem is true in view of a continuity.

Proof of Theorem 2. Using the concavity of the logarithm, from Lemma 3, we have

T T
/loglL()\,a,a+it)| dt = %/log|L(/\,oz,cr+it)|2 dt
0 )

T
1 1 2 L) 1 r(o,T)
< 2Tlog(T/|L()\,a,a+zt)| dt) = §Tlog(C(20’,a)+ T )
0

Then in view of Theorem 1 we obtain

1 l4a
/ NAajo,T)do
-0,

(1

N\ a;0,T) <

1 T r(o1,T)
= To (—2-log (C(2al,a) + —T—) +0,Tloga + BlogT).

From this the theorem follows.
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Apie Lercho dzeta funkcijos nulius. III
R. Garunkstis

Straipsnyje nagrinejami Lercho dzeta funkcijos nuliy skaitiaus iveriai i¥ virsaus.



