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Sheaves on quantaloids

Remigijus Petras GYLYS (MII)

1. Introduction

This note considers sets valued in possibly non-unital quantaloids (categories enriched in the
category of complete sup-lattices subject to certain laws). Quantaloids are a natural and use-
ful categorical generalization of quantales (which are the one-object quantaloids, i.e., complete
sup-lattices equipped with a multiplication). In the "logical” approach (see [3]) a sheaf on a to-
pological space U corresponds to the “"complete” set valued in the quantale O (/) of open sets of
U with the intersection as a multiplication. This approach to sheaves was further developed by
U. Hohle [4,5] (based on a symmetric or "right symmetric" (but non-idempotent) quantale) and
by F. Borceux and G. van den Bossche [1], C.J. Mulvey and M. Nawaz [6] (based on an idem-
potent quantale). In the present note, we provide a setting for sheaves on quantaloids (which is
more general than ones mentioned above) taking our inspiration in G. van den Bossche’s work
[2] where sets valued in quantaloids are presented using "matrices". Our results are submitted
without proofs. We are going to detail it in a subsequent paper.

2. Preliminaries on quantaloids and matrices over their
We begin by reviewing a few perminent definitions.
DEFINITION 2.1. A quantaloidis alocally small category Q (not necessarily having units) such
that:
(i) for all u,v objects in Q, the hom-set Q(u, v) is a complete lattice,

(ii) composition of morphisms of Q (in this note denoted by &) preserves arbitrary joins in
both variables:

p&\/ g = \/ p&egi and (\/ p:)&q = \/ pi&q
for all morphisms p,q of Q and for all families (p;), (¢:) of morphisms of Q (forming respective
composable pairs).

Note that we use the unconventional left-to-right direction for composition of morphisms.
Examples of the one-object quantaloids (which are called quantales) include frames (and thus
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complete Boolean algebras) and various ideal lattices of rings or C*-algebras. Many other
examples of quantales and quantaloids can be found in [ 11-[8].

From now Q will be an arbitrary quantaloid (not necessarily having units) having a small set
of objects. Let Qo denote this set and Q; the set of morphisms of Q. Let Sets/Q, denotes the
category whose objects are families X of sets X,, indexed by u € Qo. An element z € X, will
be called an element over u and we shall sometimes write d(z)foruand z € X forz € X,.
Morphisms in Sets/Qo are families of maps f, : X, — Y,.

DEFINITION 2.2 (Definition 1.3 [2]). Let Q be a quantaloid and X and Y be two objects of
Sets/Qo. A matrix M from X to Y assigns to each pair z,y of X x Y an element of Qq:
Mzy ¢ d(z) — d(y). Matrices compose by "matrix multiplication”: for M : X — Y, and
N :Y — Z, the composite M&N = L : X — Z has its general element given by

lr. = v Mz, &ny. .

yey

3. @-sets and bimodules
The notions of a Q-set and of a bimodule which will be given in this section are taken from [2].

DEFINITION 3.1 (Definition2.1 [2]). Let Q be a quantaloid. A Q-set is an object X of Sets/Qo
provided with a matrix A : X — X satisfying the following:

Idempotency: A&A = A

A @-set (X, A) will be called separated whenever it satisfies

Separation: if a; ;» = ags ,» and Gz z = az» o forallz” € X, thenz = 2'.

Anelement x € X of a Q-set (X, A) will be said to be strict provided that it satisfies

Strictness: ar ;&a; ; = az . and ar 280z, = apr o forallz’ € X and a Q-set (X, A)
itself will be called strict whenever every element z € X is strict.

We shall usually write a, for @z .. Note that strict or separated Q-sets were not considered
by G. van den Bossche in [2]. Conditions corresponding to Separation appear in [3, 4, 5]. Q-sets
as defined in [3,6] are strict Q-sets in our sense.

DEFINITION 3.2 (Definition 2.6 [2]). Let (X, A) and (Y, B) be Q-sets. A bimodule (or morp-
hism as called in [2]) F from (X, A) to (Y, B) , written F : (X,A) — (Y,B), is a pair of
adjoint matrices F : X — Y, F#:Y — X, F 4 F#, compatible with the structural matrices
Aand B, i.e., a pair of matrices satisfying the following:

Compatibility: F = A&F = F&Band F# = B&F# = F#&A.

Adjunction: A < F&F# (unit) and F#&F < B (counit).

Bimodules compose just by composition of matrices. Structural matrices are their own ad-
joints and determine the units for bimodule composition. Thus @Q-sets and their bimodules cons-
titute a category denoted by Q — Sets. Our first result is the following
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PROPOSITION 3.3 (cf. Corollary 13 [6]). Given a bimodule F = (F, F#) : (X, A) — (Y, B)
between Q-sets of a quantaloid Q,

(i)if A > F&F# then F is a monic in Q—Sets (i.e., F can be “canceled on the right” (and
hence F'# on the left)),

(ii) if F#&F > B, then F is an epic in Q—Sets (i.e., F is left-cancellable),

(iii) F is invertible in Q — Sets (of which the inverse is (F#, F)) iff A > F&F# and
F#&F > B.

4. Singletons of Q-sets and complete Q-sets of a quantaloid Q

DEFINITION 4.1. Given a Q-set (X, A), by a singleton S of (X, A) will be meant a pair of
matrices, of a "row” S : 1 — X and of a "column" S# : X — 1 (with 1 a singleton set)
assigning to each z € X morphisms s, : u — d(z) and s¥ : d(x) — u of Q, respectively, and
having the following properties:

Reproducing Property:
Sz = v sp&az ; and sf = \/ azl,,/&sf,
r'eX r'eX

for all z € X, or in matrix terms, S = S&A and S# = A&S#:

Singleton Condition: s#&s,/ < a, . forall z,2' € X, ie., S¥&S < A ;

Totality: | < Vze X s,&sf for some idempotent [ : v — u of Q such that s; = l&s, and
s¥ = s#&lforallz € X, ie., {I} < S&S* with S = {1}&S, S* = S#&{1}.

We shall sometimes write d(S) for u and shall write s for \/, ¢ x s:&s#. It easily verified
that, for any strict element 2 € X of a Q-set (X, A), the pair A, = (4., A#) consisting of
the row A; = (az,z')zex and of the column A# = (aI:'I)"GX of the structural matrix A is a
singleton of (X, A) (withl = a,).

PROPOSITION 4.2. Let X = (Xu)uer be the family of sets of all singletons of a Q-set (X, A).
Let A be the matrix defined by: s 7 = S&T# forall S = (S,S#), T = (T,T#) € X. Then
the pair (X, A) forms a strict Q-set.

Now we turn to an important class of strict and separated Q-sets of an arbitrary quantaloid
Q having the property that each singleton of a Q-set (X, A) is determined by a unique element
of X. We need the following analog of Definition 4.15 [3].

DEFINITION 4.3. Let (Y, B) be a Q-set.

(i) We say (X, A) is a sub-Q-set of (Y, B) and write (X, A) C (Y, B) to mean that X,, C Y,
for each u € Qo and the matrix A obtained by restricting B to elements of X makes (X, A) into
a Q-set such that

by =\ Goalbyy and b= \/ b, &a,,
r'eX r’eX
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forallz € X and y € Y. (By the way, if (Y, B) s strict, then this condition is always satisfied.)
(ii) We say (X, A) C (Y, B) generates (Y, B) whenever

by = v by,z &bz .y
z€X

forally,y €Y.

Note that henceforth we shall keep the notation (X, A) for the sub-Q-set of a Q-set (X, A)
of all strict elements of X.

DEFINITION 4.4. If (X, A) C (X, A) generates (X, A), then the Q-set (X, A) is said to be
strictly generated.

PROPOSITION 4.5. For a strictly generated Q-set (X, A), the Q-set (X, A) of all singletons of
(X, A) is separated, i.e., if4s,s» = ds s and Gs»,s = Gs» s forall S” € X, then S = .

PROPOSITION 4.6. Let (X, A) C (Y, B) be a sub-Q-set of (Y, B) generating it. For any sing-
leton 7 of (Y, B), the restriction x7 of 7 to X is also a singleton of (X, A) satisfying the
condition that @, 7 = b.

PROPOSITION 4.7. Let (X, A) C (Y, B) be Q-sets. Then every singleton S of (X, A) extends
to a singleton &’ of (Y, B) (with s. = s, and s’f = s# for all z € X). Among possible
extensions of a singleton S € X there is the "bottom" extension, the singleton ¥'S of (Y, B)
defined by

Ys, = \/ sz&b; , and st = v by &s¥
T€X reX

for all y € Y. This singleton has the properties that by s = as and that ¥'S < &' for any
singleton §’ of (Y, B) which extends S. The same holds for any pair of such extensions: if
YSYTeYisa pair of bottom extensions of S,7 € X to singletons of (Y, B),then BYS‘YT =
as,1, while, for any other extensions 8.7’ € Y of S, T € X (if they exist), l;s:,q-/ 2 asT,in
particular, bs: > ds (for S’ #£YS).

We now come to the key property of the Q-set (X, A) of all singletons of a strictly generated
Q-set presented in the next proposition.

PROPOSITION 4.8. Let K = (K, K#) be a singleton of the Q-set (X, A) of all singletons of a
strictly generated Q-set (X, A). Then there exists a unique element 7 € X for which ks=ars
and k% = as 7 forall S € X. :

This is formalized in the following
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DEFINITION 4.9 (cf. Definition 17 [6]). A strict and separated Q-set (X, A) will be said to be
complete provided that each singleton S = (S, S#) of (X, A) is of the form: S = A,, i.e., with
S = Az(= (az,2/)wex) and S# = A#(= (a, . )= €X), for some (unique) element = € X.

Now we are going to define an adjunction from the full subcategory SGQ — Sets of strictly
generated Q-sets of the category Q—Sets to the full subcategory CQ—Sets of complete Q-sets
of Q — Sets adapting the construction for quantales considered by C.J. Mulvey and M. Nawaz

[6].

PROPOSITION 4.10. Let ~ be the mapping which associates with every strictly generated Q-set
(X, A) the complete Q-set (X, A) of all singletons of (X, A) and the morphism mapping which
associates with every bimodule F : (X, A) — (Y, B) the bimodule F : (X, 4) — (Y, B)
defined by

fsr=\ V selefepbetfand frr 5=\ \/ t,&ff &s?.
zEX yEY - yeY zeX -

Then ~ is a (covariant) functor from the category SGQ — Sets of strictly generated Q-sets to
the category CQ — Sets of complete Q-sets.

Finally, we arrive at

Theorem 4.11 (cf. Corollary 19 [6]). The functors
SGQ—Sets .? CQ—Sets

establish an equivalence of categories, where I is the embedding of the subcategory CQ — Sets
of complete Q-sets in the category SGQ — Sets of strictly generated Q-sets.

5. Presheaves on a quantaloid Q
Henceforth we shall solely work with strict Q-sets.

DEFINITION 5.1. By a presheaf on Q will be meant a strict Q-set (X, A) together with rest-
riction: a partial mapping [ : Q1 x X x @ — X (more precisely, a "matrix" [] =
([Ju,v):ggg of partial mappings{|u,v : Q(u,v) x X, x Q(v,u) — X,) from the triplets
(p,z,p*) € Q1 x X x Q; with dom(p) = cod(p*) and cod(p) = dom(p*) = d(z) (ke-
eping d(p, z, p*) = dom(p)) such that o, &p*&p&a, < a., p&a, < p&a &p*&pia,,
and a;&p* < a,&p*&p&a,&p* (the second and the third of which are actually equalities
owing to the first condition), which will be reffered to as restrictable triplets of Q; x X x N
to the elementsp[z |p* of X satisfying the compatibility conditions that: ¢[(p[z|p#)|q# =
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(a&ep)[z|(p* &q¥), az[z]az = z, and Qppy)ph (e jpr# = P&z 2 &p'® for all restrictable
triplets (p, z, p#),(¢’, z, p'*), and (¢, p[z]p*, q#) of Q1 x X x Q. A presheaf (X,A,[])on
Q is separated whenever the underlying Q-set (X, A) is so.

DEFINITION 5.2 (cf. [6]). By the canonical presheaf (X, A, []) on Q determined by a complete
Q-set (X, A) will be meant the presheaf of which the underlying Q-set is (X, A) itself and
of which the restriction is uniquely determined by requiring that ayr, % ,» = p&az ,» and
Az plz)p# = G &p* for any restrictable triplet (p, z, p#) of Q; x X x @; and for all
elements 2” € X.

DEFINITION 5.3 (cf. Definition 23 [6]). By a map of presheaves f : (X, A,[]) — (Y, B, 1))
on Q will be meantamap f : X — Y in Sets/Q, satisfying the following:

Strictness: d(z) = d(fz), bzy = az&bs, y, and by s, = by, fz&a, for all z € X and
yey;

Isotonicity: az z+ < bsy fo0 forall z,2’ € X;

Preservation of Restriction: if (p, x, p*) is restrictable , then (p, fz, p*) is also restrictable
and f(p[z|p*) = p[fz|p*.

DEFINITION 5.4 (cf. Definition 24 [6]). By the canonical map of presheaves
T (X, A ) - (Y, B.]))

determined by a bimodule F : (X, A) — (Y, B) between complete Q-sets will be meant the
map fU: X — Y in Sets/Qo, every value fTz of which is uniquely determined by requiring

thatbsr, ,, = fr,y and b, yr, = f¥, forally €Y.

For any quantaloid Q, presheaves on Q together with maps of presheaves on Q form a ca-
tegory, which we shall denote by Q — Psh. Moreover, the assignment  — fT determines a
functor from the category CQ—Sets of complete Q-sets to the category Q — Psh of presheaves
on Q, which we shall denote by T'. We are going to establish the existence of the adjoint to T.
First, we present several results from [2] (more precisely, their "presheaf™ versions).

PROPOSITION 5.5 (Proposition 2.7 [2]). Every map f : (X, A, []) = (Y, B, []) of presheaves
on Q determines a bimodule FV = (FU, FU#) from (X, A) to (Y, B) by the relations g, =
bsz.y and fujx =by sz forallz € Xandy €Y.

PROPOSITION 5.6 (Proposition 2.9 [2]). The assignment f +— FU determines a functor from
the category Q — Psh of presheaves on Q to the full subcategory SQ—Sets of strict Q-sets of the
category QQ —Sets (or of the category SGQ — Sets), which we shall denote byU:Q— Psh —
SQ— Sets.

It is clear that the composite T'U (rightwards) is none other than the inclusion functor I :
CQ-Sets — SQ-Sets, since the assignment F — fT is one-to-one. The following proposition
generalize Theorem 25 [6].



Sheaves on quantaloids 37

Theorem 5.7. For any quantaloid Q, the functors
T=U~
Q—Psh — CQ-Sets
r

are adjoint, where ~ is the functor from SQ — Sets to CQ~— Sets (introduced in Proposition
4.10).

6. Sheaves on a quantaloid

In this section we describe a novel “sheaf condition" on a separated presheaf, corresponding to
that of the completeness of a Q-set.

DEFINITION 6.1. We say that the separated presheaf (X, A, [|) on Q is the sheaf on Q if it
satisfies sheaf condition:

(i) for every singleton S of the underlying Q-set (X, A), there exist “enough” restrictable
triplets (s, z, s#) in the sence that

Sy = \/{s,:&a,:‘rkc' € X, (sy, T, sf,)rcstrictable}
and
s# = V{ax,,/&sﬁlz’ € X, (s, 7', 87, )restrictable}

for all z € X (noting that (s, z,s¥) is restrictable iff s, = s,&s#&s, and s# =
s#&s, &s¥);

(ii) if the subset J C X, (for some u € Qo) is such that the pair £ = (E, E#) (with E =
(ez)zes, E* = (e#)*€’, and e, = e# = a, ("diagonal” element of A) for = € .J) constitutes
a singleton of the sub-Q-set (J, 7A) C (X, A), then its "bottom" extension X& = (X E, X E#)
to a singleton of (X, A) obtained by (see Proposition 4.7):

Xegr = V e;&ay o (= \/ a ;) and Xef, = v ax/’l&ef(z \/ Qzr z)
zeJ z€J z€J z€J

forall z’ € X, is of the form:
Xe = A,
for some (unique) element y € X (where Ay = ((ay,z)zex, (az,y)*€X)).

PROPOSITION 6.2. The canonical presheaf (X, A, [|) determined by any complete Q-set is a
sheaf.
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With these remarks, denoting for a quantaloid @ by Q — Sh the full subcategory of the category
Q — Psh of presheaves on Q determined by sheaves on Q, we see that the functor I : CQ—
Sets — Q—Psh (determined in Definition 5.4) that assigns to each complete Q-set its canonical
presheaf may in fact be considered as afunctor into the category of sheaves on Q, and that the
functor U : Q — Psh — SQ—Sets (introduced in Proposition 5.6 that assigns to each presheaf
its underlying Q-set) restricted to Q — Sh may be regarded as a functor into CQ — Sets. We
have the following analog of Theorem 29 [6], and also of Theorem 4.13 [3].

Theorem 6.3. For a quantaloid Q, the categories of complete Q-sets and of sheaves on Q are
isomorphic by the functors

CQ—Sets — Q—Sh
U

that assign respectively to each complete Q-set its canonical presheaf, and to each sheaf its
underlying Q-set.
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Pluostai vir§ kvantaloidy
R.P. Gylys

Tiriamos aibés su reik$mémis i§ kvantaloido. ISvestos formulés apibendrina nesenus C.J. Mulvey ir M.
Nawaz rezultatus.



