Sheaves on quantaloids

Remigijus Petras GYLYS (MII)

1. Introduction

This note considers sets valued in possibly non-unital quantaloids (categories enriched in the category of complete sup-lattices subject to certain laws). Quantaloids are a natural and use-ful categorical generalization of quantales (which are the one-object quantaloids, i.e., complete sup-lattices equipped with a multiplication). In the "logical" approach (see [3]) a sheaf on a topological space U corresponds to the "complete" set valued in the quantale O(U) of open sets of U with the intersection as a multiplication. This approach to sheaves was further developed by U. Höhle [4,5] (based on a symmetric or "right symmetric" (but non-idempotent) quantale) and by F. Borceux and G. van den Bossche [1], C.J. Mulvey and M. Nawaz [6] (based on an idempotent quantale). In the present note, we provide a setting for sheaves on quantaloids (which is more general than ones mentioned above) taking our inspiration in G. van den Bossche's work [2] where sets valued in quantaloids are presented using "matrices". Our results are submitted without proofs. We are going to detail it in a subsequent paper.

2. Preliminaries on quantaloids and matrices over their

We begin by reviewing a few perminent definitions.

DEFINITION 2.1. A quantaloid is a locally small category Q (not necessarily having units) such that:

(i) for all u, v objects in Q, the hom-set Q(u, v) is a complete lattice,

(ii) composition of morphisms of Q (in this note denoted by &) preserves arbitrary joins in both variables:

$$p\&\bigvee_i q_i = \bigvee_i p\&q_i \text{ and } (\bigvee_i p_i)\&q = \bigvee_i p_i\&q$$

for all morphisms p,q of Q and for all families (p_i) , (q_i) of morphisms of Q (forming respective composable pairs).

Note that we use the unconventional left-to-right direction for composition of morphisms. Examples of the one-object quantaloids (which are called quantales) include frames (and thus complete Boolean algebras) and various ideal lattices of rings or C^* -algebras. Many other examples of quantales and quantaloids can be found in [1]–[8].

From now Q will be an arbitrary quantaloid (not necessarily having units) having a small set of objects. Let Q_0 denote this set and Q_1 the set of morphisms of Q. Let $Sets/Q_0$ denotes the category whose objects are families X of sets X_u indexed by $u \in Q_0$. An element $x \in X_u$ will be called an element over u and we shall sometimes write d(x) for u and $x \in X$ for $x \in X_u$. Morphisms in $Sets/Q_0$ are families of maps $f_u : X_u \to Y_u$.

DEFINITION 2.2 (Definition 1.3 [2]). Let Q be a quantaloid and X and Y be two objects of $Sets/Q_0$. A matrix M from X to Y assigns to each pair x,y of $X \times Y$ an element of Q_1 : $m_{x,y} : d(x) \to d(y)$. Matrices compose by "matrix multiplication": for $M : X \to Y$, and $N : Y \to Z$, the composite $M\&N = L : X \to Z$ has its general element given by

$$l_{x,z} = \bigvee_{y \in Y} m_{x,y} \& n_{y,z}.$$

3. Q-sets and bimodules

The notions of a Q-set and of a bimodule which will be given in this section are taken from [2].

DEFINITION 3.1 (Definition 2.1 [2]). Let Q be a quantaloid. A Q-set is an object X of $Sets/Q_0$ provided with a matrix $A: X \to X$ satisfying the following: *Idempotency:* A&A = AA Q-set (X, A) will be called *separated* whenever it satisfies *Separation:* if $a_{x,x^{"}} = a_{x',x^{"}}$ and $a_{x^{"},x} = a_{x^{"},x'}$ for all $x^{"} \in X$, then x = x'. An element $x \in X$ of a Q-set (X, A) will be said to be *strict* provided that it satisfies *Strictness:* $a_{x,x}\&a_{x,x'} = a_{x,x'}$ and $a_{x',x}\&a_{x,x} = a_{x',x}$ for all $x' \in X$ and a Q-set (X, A)itself will be called *strict* whenever every element $x \in X$ is strict.

We shall usually write a_x for $a_{x,x}$. Note that strict or separated Q-sets were not considered by G. van den Bossche in [2]. Conditions corresponding to Separation appear in [3, 4, 5]. Q-sets as defined in [3,6] are strict Q-sets in our sense.

DEFINITION 3.2 (Definition 2.6 [2]). Let (X, A) and (Y, B) be Q-sets. A bimodule (or morphism as called in [2]) \mathcal{F} from (X, A) to (Y, B), written $\mathcal{F} : (X, A) \to (Y, B)$, is a pair of adjoint matrices $F : X \to Y, F^{\#} : Y \to X, F \dashv F^{\#}$, compatible with the structural matrices A and B, i.e., a pair of matrices satisfying the following:

Compatibility: F = A&F = F&B and $F^{\#} = B\&F^{\#} = F^{\#}\&A$, Adjunction: $A \leq F\&F^{\#}$ (unit) and $F^{\#}\&F \leq B$ (counit).

Bimodules compose just by composition of matrices. Structural matrices are their own adjoints and determine the units for bimodule composition. Thus Q-sets and their bimodules constitute a category denoted by Q-Sets. Our first result is the following

PROPOSITION 3.3 (cf. Corollary 13 [6]). Given a bimodule $\mathcal{F} = (F, F^{\#}) : (X, A) \to (Y, B)$ between Q-sets of a quantaloid Q,

(i) if $A \ge F\&F^{\#}$, then \mathcal{F} is a monic in Q-Sets (i.e., F can be "canceled on the right" (and hence $F^{\#}$ on the left)),

(ii) if $F^{\#}\&F \ge B$, then \mathcal{F} is an epic in Q-Sets (i.e., F is left-cancellable),

(iii) \mathcal{F} is invertible in Q-Sets (of which the inverse is $(F^{\#}, F)$) iff $A \ge F\&F^{\#}$ and $F^{\#}\&F \ge B$.

4. Singletons of Q-sets and complete Q-sets of a quantaloid Q

DEFINITION 4.1. Given a Q-set (X, A), by a singleton S of (X, A) will be meant a pair of matrices, of a "row" $S : 1 \to X$ and of a "column" $S^{\#} : X \to 1$ (with 1 a singleton set) assigning to each $x \in X$ morphisms $s_x : u \to d(x)$ and $s_x^{\#} : d(x) \to u$ of Q, respectively, and having the following properties:

Reproducing Property:

$$s_x = \bigvee_{x' \in X} s_{x'} \& a_{x',x}$$
 and $s_x^{\#} = \bigvee_{x' \in X} a_{x,x'} \& s_{x'}^{\#}$

for all $x \in X$, or in matrix terms, S = S&A and $S^{\#} = A\&S^{\#}$;

Singleton Condition: $s_x^{\#} \& s_{x'} \leq a_{x,x'}$ for all $x, x' \in X$, i.e., $S^{\#} \& S \leq A$;

Totality: $l \leq \bigvee_{x \in X} s_x \& s_x^{\#}$ for some idempotent $l : u \to u$ of Q such that $s_x = l \& s_x$ and $s_x^{\#} = s_x^{\#} \& l$ for all $x \in X$, i.e., $\{l\} \leq S \& S^{\#}$ with $S = \{l\} \& S, S^{\#} = S^{\#} \& \{l\}$.

We shall sometimes write d(S) for u and shall write $\tilde{a_S}$ for $\bigvee_{x \in X} s_x \& s_x^{\#}$. It easily verified that, for any strict element $x \in X$ of a Q-set (X, A), the pair $\mathcal{A}_x = (A_x, A_x^{\#})$ consisting of the row $A_x = (a_{x,x'})_{x' \in X}$ and of the column $A_x^{\#} = (a_{x',x})^{x' \in X}$ of the structural matrix A is a singleton of (X, A) (with $l = a_x$).

PROPOSITION 4.2. Let $\tilde{X} = (\tilde{X}_u)_{u \in Q_0}$ be the family of sets of all singletons of a Q-set (X, A). Let \tilde{A} be the matrix defined by: $\tilde{a}_{S,T} = S\&T^{\#}$ for all $S = (S, S^{\#}), T = (T, T^{\#}) \in \tilde{X}$. Then the pair (\tilde{X}, \tilde{A}) forms a strict Q-set.

Now we turn to an important class of strict and separated Q-sets of an arbitrary quantaloid Q having the property that each singleton of a Q-set (X, A) is determined by a unique element of X. We need the following analog of Definition 4.15 [3].

DEFINITION 4.3. Let (Y, B) be a Q-set.

(i) We say (X, A) is a *sub-Q-set* of (Y, B) and write $(X, A) \subseteq (Y, B)$ to mean that $X_u \subseteq Y_u$ for each $u \in Q_0$ and the matrix A obtained by restricting B to elements of X makes (X, A) into a Q-set such that

$$b_{x,y} = \bigvee_{x' \in X} a_{x,x'} \& b_{x',y}$$
 and $b_{y,x} = \bigvee_{x' \in X} b_{y,x'} \& a_{x',x}$

for all $x \in X$ and $y \in Y$. (By the way, if (Y, B) is strict, then this condition is always satisfied.) (ii) We say $(X, A) \subseteq (Y, B)$ generates (Y, B) whenever

$$b_{y,y'} = \bigvee_{x \in X} b_{y,x} \& b_{x,y'}$$

for all $y, y' \in Y$.

Note that henceforth we shall keep the notation (X, \underline{A}) for the sub-Q-set of a Q-set (X, A) of all strict elements of X.

DEFINITION 4.4. If $(\underline{X}, \underline{A}) \subseteq (X, A)$ generates (X, A), then the Q-set (X, A) is said to be strictly generated.

PROPOSITION 4.5. For a strictly generated Q-set (X, A), the Q-set (\tilde{X}, \tilde{A}) of all singletons of (X, A) is separated, i.e., if $\tilde{a}_{S,S''} = \tilde{a}_{S',S''}$ and $\tilde{a}_{S'',S} = \tilde{a}_{S'',S''}$ for all $S'' \in \tilde{X}$, then S = S'.

PROPOSITION 4.6. Let $(X, A) \subseteq (Y, B)$ be a sub-Q-set of (Y, B) generating it. For any singleton \mathcal{T} of (Y, B), the restriction $_X\mathcal{T}$ of \mathcal{T} to X is also a singleton of (X, A) satisfying the condition that $\tilde{a}_{_X\mathcal{T}} = \tilde{b}_{\mathcal{T}}$.

PROPOSITION 4.7. Let $(X, A) \subseteq (Y, B)$ be Q-sets. Then every singleton S of (X, A) extends to a singleton S' of (Y, B) (with $s'_x = s_x$ and $s'^{\#}_x = s^{\#}_x$ for all $x \in X$). Among possible extensions of a singleton $S \in \tilde{X}$ there is the "bottom" extension, the singleton YS of (Y, B)defined by

$${}^{Y}s_{y} = \bigvee_{x \in X} s_{x} \& b_{x,y}$$
 and ${}^{Y}s_{y}^{\#} = \bigvee_{x \in X} b_{y,x} \& s_{x}^{\#}$

for all $y \in Y$. This singleton has the properties that $\tilde{b}_{YS} = \tilde{a}_S$ and that ${}^YS \leq S'$ for any singleton S' of (Y, B) which extends S. The same holds for any pair of such extensions: if ${}^YS, {}^YT \in \tilde{Y}$ is a pair of bottom extensions of $S, T \in \tilde{X}$ to singletons of (Y, B), then $\tilde{b}_{YS,YT} = \tilde{a}_{S,T}$, while, for any other extensions $S', T' \in \tilde{Y}$ of $S, T \in \tilde{X}$ (if they exist), $\tilde{b}_{S',T'} \geq \tilde{a}_{S,T}$, in particular, $\tilde{b}_{S'} > \tilde{a}_S$ (for $S' \neq {}^YS$).

We now come to the key property of the Q-set (\tilde{X}, \tilde{A}) of all singletons of a strictly generated Q-set presented in the next proposition.

PROPOSITION 4.8. Let $\mathcal{K} = (K, K^{\#})$ be a singleton of the Q-set (\tilde{X}, \tilde{A}) of all singletons of a strictly generated Q-set (X, A). Then there exists a unique element $\mathcal{T} \in \tilde{X}$ for which $k_{\mathcal{S}} = \tilde{a}_{\mathcal{T}, \mathcal{S}}$ and $k_{\mathcal{S}}^{\#} = \tilde{a}_{\mathcal{S}, \mathcal{T}}$ for all $\mathcal{S} \in \tilde{X}$.

This is formalized in the following

DEFINITION 4.9 (cf. Definition 17 [6]). A strict and separated Q-set (X, A) will be said to be complete provided that each singleton $S = (S, S^{\#})$ of (X, A) is of the form: $S = A_x$, i.e., with $S = A_x (= (a_{x,x'})_{x' \in X})$ and $S^{\#} = A^{\#} (= (a_{x',x})^{x' \in X})$, for some (unique) element $x \in X$.

Now we are going to define an adjunction from the full subcategory SGQ-Sets of strictly generated Q-sets of the category Q-Sets to the full subcategory CQ-Sets of complete Q-sets of Q-Sets adapting the construction for quantales considered by C.J. Mulvey and M. Nawaz [6].

PROPOSITION 4.10. Let ~ be the mapping which associates with every strictly generated Q-set (X, A) the complete Q-set (\tilde{X}, \tilde{A}) of all singletons of (X, A) and the morphism mapping which associates with every bimodule $\mathcal{F} : (X, A) \to (Y, B)$ the bimodule $\tilde{\mathcal{F}} : (\tilde{X}, \tilde{A}) \to (\tilde{Y}, \tilde{B})$ defined by

$$\tilde{f}_{\mathcal{S},\mathcal{T}} = \bigvee_{\underline{x}\in\underline{X}}\bigvee_{\underline{y}\in\underline{Y}} \bigvee_{\underline{s}\underline{x}}\&f_{\underline{x},\underline{y}}\&t_{\underline{y}}^{\#} \text{ and } \tilde{f}^{\#}_{\mathcal{T},\mathcal{S}} = \bigvee_{\underline{y}\in\underline{Y}}\bigvee_{\underline{x}\in\underline{X}} t_{\underline{y}}\&f_{\underline{y},\underline{x}}^{\#}\&s_{\underline{x}}^{\#}.$$

Then \sim is a (covariant) functor from the category SGQ-Sets of strictly generated Q-sets to the category CQ-Sets of complete Q-sets.

Finally, we arrive at

Theorem 4.11 (cf. Corollary 19 [6]). The functors

 $SGQ-Sets \stackrel{\simeq}{=} CQ-Sets$

establish an equivalence of categories, where I is the embedding of the subcategory CQ-Sets of complete Q-sets in the category SGQ-Sets of strictly generated Q-sets.

5. Presheaves on a quantaloid Q

Henceforth we shall solely work with strict Q-sets.

DEFINITION 5.1. By a presheaf on Q will be meant a strict Q-set (X, A) together with restriction: a partial mapping $[] : Q_1 \times X \times Q_1 \to X$ (more precisely, a "matrix" $[] = ([]_{u,v})_{v \in Q_0}^{u \in Q_0}$ of partial mappings $[]_{u,v} : Q(u,v) \times X_v \times Q(v,u) \to X_u)$ from the triplets $(p, x, p^{\#}) \in Q_1 \times X \times Q_1$ with $dom(p) = cod(p^{\#})$ and $cod(p) = dom(p^{\#}) = d(x)$ (keeping $d(p, x, p^{\#}) = dom(p)$) such that $a_x \& p^{\#} \& p \& a_x \& p^{\#} \& p \& a_x, q_1 \& p \& q_2 \& q_$

 $(q\&p)[x](p^{\#}\&q^{\#}), a_x[x]a_x = x, \text{ and } a_{p[x]p^{\#},p'[x']p'^{\#}} = p\&a_{x,x'}\&p'^{\#} \text{ for all restrictable triplets } (p, x, p^{\#}), (p', x, p'^{\#}), \text{ and } (q, p[x]p^{\#}, q^{\#}) \text{ of } Q_1 \times X \times Q_1. \text{ A presheaf } (X, A, []) \text{ on } Q \text{ is separated whenever the underlying } Q\text{-set } (X, A) \text{ is so.}$

DEFINITION 5.2 (cf. [6]). By the canonical presheaf (X, A, []) on Q determined by a complete Q-set (X, A) will be meant the presheaf of which the underlying Q-set is (X, A) itself and of which the restriction is uniquely determined by requiring that $a_{p[x]p^{\#},x^{"}} = p\&a_{x,x^{"}}$ and $a_{x^{"},p[x]p^{\#}} = a_{x^{"},x}\&p^{\#}$ for any restrictable triplet $(p, x, p^{\#})$ of $Q_1 \times X \times Q_1$ and for all elements $x^{"} \in X$.

DEFINITION 5.3 (cf. Definition 23 [6]). By a map of presheaves $f : (X, A, []) \to (Y, B, [])$ on Q will be meant a map $f : X \to Y$ in $Sets/Q_0$ satisfying the following:

Strictness: d(x) = d(fx), $b_{fx,y} = a_x \& b_{fx,y}$, and $b_{y,fx} = b_{y,fx} \& a_x$ for all $x \in X$ and $y \in Y$;

Isotonicity: $a_{x,x'} \leq b_{fx,fx'}$ for all $x,x' \in X$;

Preservation of Restriction: if $(p, x, p^{\#})$ is restrictable, then $(p, fx, p^{\#})$ is also restrictable and $f(p[x]p^{\#}) = p[fx]p^{\#}$.

DEFINITION 5.4 (cf. Definition 24 [6]). By the canonical map of presheaves

 $f^{\Gamma}:(X,A,\lceil \rfloor)\to (Y,B,\lceil \rfloor)$

determined by a bimodule $F : (X, A) \to (Y, B)$ between complete Q-sets will be meant the map $f^{\Gamma} : X \to Y$ in $Sets/Q_0$, every value $f^{\Gamma}x$ of which is uniquely determined by requiring that $b_{f^{\Gamma}x,y} = f_{x,y}$ and $b_{y,f^{\Gamma}x} = f_{y,x}^{\#}$ for all $y \in Y$.

For any quantaloid Q, presheaves on Q together with maps of presheaves on Q form a category, which we shall denote by Q - Psh. Moreover, the assignment $\mathcal{F} \mapsto f^{\Gamma}$ determines a functor from the category CQ-Sets of complete Q-sets to the category Q - Psh of presheaves on Q, which we shall denote by Γ . We are going to establish the existence of the adjoint to Γ . First, we present several results from [2] (more precisely, their "presheaf" versions).

PROPOSITION 5.5 (Proposition 2.7 [2]). Every map $f: (X, A, []) \to (Y, B, [])$ of presheaves on Q determines a bimodule $\mathcal{F}^U = (F^U, F^{U^{\#}})$ from (X, A) to (Y, B) by the relations $f_{x,y}^U = b_{fx,y}$ and $f_{y,x}^{U^{\#}} = b_{y,fx}$ for all $x \in X$ and $y \in Y$.

PROPOSITION 5.6 (Proposition 2.9 [2]). The assignment $f \mapsto \mathcal{F}^U$ determines a functor from the category Q - Psh of presheaves on Q to the full subcategory SQ-Sets of strict Q-sets of the category Q-Sets (or of the category SGQ-Sets), which we shall denote by $U: Q - Psh \rightarrow$ SQ-Sets.

It is clear that the composite ΓU (rightwards) is none other than the inclusion functor I: $CQ-Sets \rightarrow SQ-Sets$, since the assignment $\mathcal{F} \mapsto f^{\Gamma}$ is one-to-one. The following proposition generalize Theorem 25 [6]. **Theorem 5.7.** For any quantaloid Q, the functors

$$Q - Psh \stackrel{\Sigma = U \sim}{\underset{\Gamma}{\longrightarrow}} CQ - Sets$$

are adjoint, where \sim is the functor from SQ-Sets to CQ-Sets (introduced in Proposition 4.10).

6. Sheaves on a quantaloid

In this section we describe a novel "sheaf condition" on a separated presheaf, corresponding to that of the completeness of a Q-set.

DEFINITION 6.1. We say that the separated presheaf (X, A, []) on Q is the sheaf on Q if it satisfies *sheaf condition*:

(i) for every singleton S of the underlying Q-set (X, A), there exist "enough" restrictable triplets $(s_x, x, s_x^{\#})$ in the sence that

$$s_x = \bigvee \{ s_{x'} \& a_{x',x} | x' \in X, (s_{x'}, x', s_{x'}^{\#}) \text{restrictable} \}$$

and

$$s_x^{\#} = \bigvee \{a_{x,x'} \& s_{x'}^{\#} | x' \in X, (s_{x'}, x', s_{x'}^{\#}) \text{restrictable} \}$$

for all $x \in X$ (noting that $(s_x, x, s_x^{\#})$ is restrictable iff $s_x = s_x \& s_x^{\#} \& s_x$ and $s_x^{\#} = s_x^{\#} \& s_x \& s_x^{\#})$;

(ii) if the subset $J \subseteq X_u$ (for some $u \in Q_0$) is such that the pair $\mathcal{E} = (E, E^{\#})$ (with $E = (e_x)_{x \in J}, E^{\#} = (e_x^{\#})^{x \in J}$, and $e_x = e_x^{\#} = a_x$ ("diagonal" element of A) for $x \in J$) constitutes a singleton of the sub-Q-set $(J, JA) \subseteq (X, A)$, then its "bottom" extension ${}^{X}\mathcal{E} = ({}^{X}E, {}^{X}E^{\#})$ to a singleton of (X, A) obtained by (see Proposition 4.7):

$${}^{X}e_{x'} = \bigvee_{x \in J} e_x \& a_{x,x'} (= \bigvee_{x \in J} a_{x,x'}) \text{ and } {}^{X}e_{x'}^{\#} = \bigvee_{x \in J} a_{x',x} \& e_x^{\#} (= \bigvee_{x \in J} a_{x',x})$$

for all $x' \in X$, is of the form:

$${}^{X}\mathcal{E}=\mathcal{A}_{n}$$

for some (unique) element $y \in X$ (where $\mathcal{A}_y = ((a_{y,x})_{x \in X}, (a_{x,y})^{x \in X}))$.

PROPOSITION 6.2. The canonical presheaf (X, A, []) determined by any complete Q-set is a sheaf.

With these remarks, denoting for a quantaloid Q by Q - Sh the full subcategory of the category Q - Psh of presheaves on Q determined by sheaves on Q, we see that the functor $\Gamma : CQ - Sets \rightarrow Q - Psh$ (determined in Definition 5.4) that assigns to each complete Q-set its canonical presheaf may in fact be considered as afunctor into the category of sheaves on Q, and that the functor $U : Q - Psh \rightarrow SQ - Sets$ (introduced in Proposition 5.6 that assigns to each presheaf its underlying Q-set) restricted to Q - Sh may be regarded as a functor into CQ - Sets. We have the following analog of Theorem 29 [6], and also of Theorem 4.13 [3].

Theorem 6.3. For a quantaloid Q, the categories of complete Q-sets and of sheaves on Q are isomorphic by the functors

$$CQ-Sets \xrightarrow{\Gamma} Q-Sh$$

that assign respectively to each complete Q-set its canonical presheaf, and to each sheaf its underlying Q-set.

References

- B1 F. Borceux, G. van den Bossche, Quantales and their sheaves, Order 3, 61-87 (1986).
- G. van den Bossche, Quantaloids and non-commutative ring representations, Appl. Categ. Structures 3, 305–320 (1995). F M.P. Fourman, D.S. Scott, Sheaves and logic, in: Applications of Sheaves, Lecture Notes in Mathematics 753, Springer-
- Verlag, Berlin, Heidelberg, New York (1979) pp. 302–401.
- U. Höhle, *M*-valued sets and sheaves over integral *cl*-monoids, in: *Applications of Category Theory to Fuzzy Subsets*, eds. S.E. Rodabaugh et al., Kluwer, Boston (1992), pp. 33-72.
- U. Höhle, GL-Quantales: Q-valued sets and their singletons, Studia Logica 61, 123-148 (1998).
- C.J. Mulvey, M. Nawaz, Quantales: quantal sets, in: Non-Classical Logics and their Applications to Fuzzy Subsets, eds. U. Höhle, E.P. Klement, Kluwer, Boston (1995), pp. 159-217.
- K.I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics 234, Longman, Burnt Mill, Harlow (1990).
- K.I. Rosenthal, The Theory of Quantaloids, Longman, Harlow (1996).

Pluoštai virš kvantaloidų

R.P. Gylys

Tiriamos aibės su reikšmėmis iš kvantaloido. Išvestos formulės apibendrina nesenus C.J. Mulvey ir M. Nawaz rezultatus.