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1. Introduction

All rings in this paper are associative with identity element which should be preserved by ring
homomorphisms and all modules are unitary.

The main object of this paper are strongly prime ideals, their characterization in terms of the
strongly multiplicative sets and insulating systems. Recall that a ring R is called strongly prime
if it is prime and its central closure Q(R) is a simple ring. See [2] and [1] for definitions and
basic properties of the central closure and the extended centroid of a semiprime ring. Particu-
larly, Theorem 2.7 shows that strongly prime rings are very natural analogs of the commutative
domains. An ideal of the ring is called strongly prime if corresponding factor ring is strongly
prime. We characterize strongly prime rings as strongly prime modules over multiplication ring,
also in terms of Procesi category and prove that for the strongly prime ring R its central clo-
sure is a flat epimorphism which defines a symmetric and perfect localization in the categories
Mod — R and R — Mod - right and left R-modules, and that Q(R) is canonically isomorphic
to the quotient rings of R for these localizations. We also investigate relations of the ring and its
multiplication ring. Proofs of some announced results will appear soon.

2. Terminology and basic results on strongly prime rings

By an ideal of the ring R we shall understand a two-sided ideal. We denote {ay, ...,a,} set
consisting of the elements a, ..., a,, and by (a) an ideal of the ring generated by the element
a € R. A C B means proper inclusion.

The subring of EndzR, acting from the left on R, generated as a ring by all left and right
mutiplications !, and 3, where a,b € R, is called a multiplication ring of the ring R and will
be denoted by M (R). So each A € M(R) is of the form A = 3~ l,, 7, where ax, br € R and
can be represented as the sum ), ax ® bf, where by € R° . Then Az = Y, axzbi,z € R. It’s
clear that the canonical embedding R — M(R), sending a € Rtol, is onto if and only if R is
commutative.

*The research was supported by DAAD.
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Let M be an R-bimodule. Denote by Zys = Zp(R) = {6 € M | ré = b6r,r € R} the set of
R-centralizing elements of the M. A bimodule M is called centred R-bimoduleif M = RZ ;.

Let ¢ : R — S be aring homommrphism. We call ¢ centred homomorphism if S is centred
R-bimodute. It’s easy to see that centred extension of the ring R is a factor ring of a semigroup
ring R[G] where G is the free semigroup (with unit). Rings and their centred homomophisms
form a category, which is called Procesi category.

M € R — Mod is called strongly prime if for any non-zero x,y € M, there exits a finite
set of elements {ay,...,an} C R, n = n(z,y), such that Anngr{aiz, ...,anz} C Anng{y}.
Taking M = R notion of the one sided strongly prime ring is obtained.(See [3]). We look
at the ring R as the R-bimodule taking into account left and right action of R on itself. This
immediately leads to the notion of an ps(gy R-module.

We call an element a € R a symmetric zero divisor if tor any finite subset of elements
{a1,...,an} C (a), Annp(ry{ar,...,an} € Annpr(ry{1r}. Of course, when R is commuta-
tive, taking n = 1, a; = a, we obtain the usual definition of zero-divisors. Denote zd(R) the set
of zero divisors of the ring R.

Theorem 2.1. For any nonzero ring R the following conditions are equivalent:

(1) R is a strongly prime ring;

(2) 2d(R) =0

(3) R s a strongly prime module over its multiplication ring M(R);

(4) for any nonzero a,b € R there are )1, ..., \n € M(R) such that
AnnM(R){/\la, ey Ana} C AnnM(R){b};

(5) for any nonzero a € R there are A1, ..., A\, € M(R) such that
AnnM(R){)\la, ey )\na} - AnnM(R){lg};

(5°) for any nonzero a € R there exist ay, ..., a, € (a), such that

i Tiaryi =0, forall 1 < k < n, implies Y, ziy; = 0;

(6) there exists a centred monomorphism ¢ : R — K where K is a simple ring;
(7) There exists a centred monomorphism ¢ : R — S, where the ring S has the following
property: for each nonzero ideal I C R, its extension I¢ in S, I¢ = SIS, isequal to S.

Proof. Equivalence of conditions (1), (3), (4), (5) is proved in [9] Thm. 35.6. Obviously, (3) =
(6) = (7).

We prove (7) = (5). Take nonzero a € R. Then, by assumption, (a)¢ = (a)Zs = S. This
gives an expression Y, axfx = 1 with some ay,...,a, € (a), 6 € Zs. So we obtain that
AnnM(R){al, erey a,.} g AnnM(R){IR}.

Equivalence (2) and (5) easily follows from the definition of the symmetric zero divisors.

(5") is exactly (5) written in the terms of elements of the ring R.

Particularly, by (2) of this theorem, each ring which is not strongly prime has nonzero sym-
metric zero-divisors. It is also clear that a strongly prime ring is left and right strongly prime
over itself.
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We note that for the strongly prime ring its central closure coinsides with right and left
Martindale’s quotient rings, and so with the symmetric ring of quotients. (See [6]).

Lemma 2.2. Each centred homomorphism of rings ¢ : R — S induces the canonical centred
homomorphism ¢’ : M(R) — M(S). If ¢ is a monomorphism, then also ¢’ is a monomorphism.

For each prime ring R, we denote F' = Z(Q(R)) the central closure of R which is a field.

Theorem 2.3. A ring R is strongly prime if and only if its multiplication ring M (R) is strongly
prime. In this case their extended centroids are canonically isomorphic, and the central closure

Q(M(R)) = Q ®r Q°, where Q = Q(R).

Theorem 2.4. Let R be a strongly prime ring. If a ring S is Morita equivalent to the ring R,
then S is strongly prime and their extended centroids are isomorphic.

Let R be aring. A finite set A = {ay, ...,an} C R is called an insulator, if

Annppry{as, ..., an} C Annpry{1r};

ie.,if Aa; =... = Aa, =0, implies A1 = 0.

In a semiprime ring R, insulators can be characterised in terms of the central closure Q(R)
and extended centroid F(R) of the ring. Indeed, using Theorem 32.3 in [9], we obtain the fol-
lowing

Proposition 2.5. In a semiprime ring R finite set A = {a,, ..., an} is an insulate if and only if
1€ AF,ie if

a1 +...+anpn =1
with suitable pi, (1 < k < n) from the extended centroid F of the ring R.

Particularly this holds for the strongly prime rings.
Let R be a ring. Denote by F the set of the right ideals in R, containing an insulator. Analo-
gously we define the set F' of the left ideals of R, containing an insulator.

Lemma 2.6. Let R be a strongly prime ring. Then for every q € Q(R) there exist elements
i1y..yin € Rand ¢y, ..., Yn € F, such that qix, ixq € R, and )", ixx = 1.

Proof Letq=7101 + ... + Tm®Pm, Tk € R, px € F.

By the definition of the central closure of a prime ring, all i can be represented as M (R)-
homomorphisms ¢y : Ix — R where I} and I = NI are non zero idels in R, so I contains an
insulator, Thus we have 1 = ), ixty for some ix € I and x € F. But pii = @i (i) € R for
alli € I,soqix, ixg€e I, 1 <k < n.
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This lemma implies one of the equivalent conditions of the theorem Popescu-Spircu (see
[8], Ch.XI, Proposition 3.4) and from it we option all the statements of the Theorem 2.7 except
that Gabriel filters are symmetric. This fact can be proved directly. So we obtain the following
crucial Theorem:

Theorem 2.7. Let R be a strongly prime ring. Then Q(R) ®r Q(R) = Q(R), Q(R) is left and
right flat as the R-module. The sets F ang F' are symmetric Gabriel filters, the corresponding
localizations are perfect, and the central closure Q(R) is canonically isomorphic to the guotient
ring of R with respect to F and F'.

3. Strongly prime ideals, strongly multiplicative and insulating sets

Anideal p C R is called strongly prime if the factor ring R/p is a strongly prime ring.
We can adapt the theorem 2.1 for equivalent characterizations of the strongly prime ideal.
From the (5) of this theorem we obtain the following:

Proposition 3.1. An idealp C R is strorigly prime if and only if for each a ¢ p, there exist
elements ay, ...,a, € (a), n = n(a), such that for each A € M(R) with \1 ¢ p, at least one of
elements \ay, & p.

Clearly, maximal ideals of the ring are strongly prime. It is well known that in PT rings each
prime ideal is strongly prime. Since not each prime ring has a simple central closure, prime ideals
are not necessarily strongly prime. We easily obtain from Theorem 2.4, that strongly prime ideals
are preserved under Morita equivalences. If ¢ : R — S is a centred homomorphism of rings,
and q C S is a strongly prime ideal, we easily obtain from (6) of Theorem 2.1 thatp = ¢~1q is
the strongly prime ideal in R.

The intersection of all strongly prime ideals of the ring R we call a strongly prime radical
and denote it by sr(R). Let R[ X}, ...X,] be a polynomial ring over the ring R with commuting
or noncommuting indeterminates.

Theorem 3.2. a € sr(R) ifand only if for eachn € N and arbitrary elements a;, ...,a, € (a),
the ideal in R[X1, ..., X,), generated by polynomial a1 X, + ... + an X, — 1 contains 1.

Proof. 1f for some polynomial a; X +... +a, X, — 1 generates a proper ideal in R[ X1, ..., X,],
Wwe can take a maximal ideal M C R[X}, ..., X,,] containing this polynomial. Evidently a ¢ M.
So we have the centred homomorphims ¢ : R — R[ X}, ..., Xn]/ M with ga # 0 and ¢~ M is
the strongly prime ideal in R, not containing a.

Ifa ¢ sr(R), then a ¢ p for some strongly prime ideal p C R. So (a)* = Q(R/p) and we
have an expression .

a1uy + ... + dpun = 1in Q(R/p) with ay, ..., an € (@), u,...,un € F(R/p).
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So polynomial aj X; + ... +an X, — 1 is in the kernel of the homomorphism from R[X,,..., X5
to Q(R/p), which sends X to the ux, 1 < k < n. Thus the ideal, generated by this polynomial
is proper.

Denote by BMc(R) the Brown-McCoy radical of the ring R.

Corollary 3.3.

st(R) = NpBMc(R[ X1, ..., Xn])-
Recall that Levitzki radical of the ring is the biggest locally nilpotent ideal.

Theorem 3.4. Strongly prime radical sr(R) of the nonzero ring contains the Levitzki radical
L(R).

It would be interesting to know if or under which conditions the upper nil-radical of the ring
is contained in sr(R).

Now we introduce the notion of a strongly multiplicative set of a ring and characterize
strongly prime ideals in terms of these sets.

We call a subset S C R strongly multiplicative , or sm-set, if 1 € S and for any a € S there
exist elements aj....,an € (a), (n = n(a)), such that for each A\ € M(R) with A1 € S, we
have \ax € S forsome 1l < k < n.

Proposition 3.5. Ifp C R is a strongly prime ideal, its complement is a strongly multiplicative
set.

Indeed, this Proposition is just another form of Proposition 3.1. Example. Let I C R be an
ideal. The set of elements S = {1 + i, i € I} is an sm-set. For a proof, take n = 1, a; = a for
eacha € S.

Theorem 3.6. Letr S C R, 0 & S be a strongly multiplicative set. Each ideal p C R, maximal
with respect to p NS = 0, is strongly prime. For each a € S, elements a1, ....a, € (a) from the
definition of the strongly multiplicative set are insulators in R/p.

Proof Let x ¢ p. Then p + pox = a € S, for some p € p and po € M(R). Let ax = Mka =
AP + Apox € (a), 1 < k < n be elements corresponding to a in the definition of the sm-set.
Let A\l & p. Then g+1pAl = (I;+19A)1 = N1 € S, where [, € M(R) is the left multiplication
by q. Then for some Xay € S, for some k. thus not in p. We have

Nax = (lg + voX) (AP + AkpoT) = qak + VoAAkp + VoA Ak poT & P.

But gax and voAMip are in p, s0 Agpoz & p. Thus, for each = ¢ p, there exist a finite set of
elements x = Appox € (), such that for each A € M(R) with A1 ¢ p, at least one of the
elements Az € p. By Proposition 3.1, ideal p is strongly prime.
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Let S C R be a strongly multiplicative set. Similarly to the commutative case, we define the
set S’ ={u € R| (u) NS # 0} and call it the saturation of S. Denote H = {Uapo |PaNS =
0}, where po C R are strongly prime ideals.

Proposition 3.7. Let S be a strongly multiplicative set. Then S’ is also strongly multiplicative
and 8’ = R\ H - the complement to the union of all strongly prime ideals disjoint with S.

Let 7 be a set which elements are finite subsets of the ring R. We call the set Z an in-
sulating set if for each {a1,...,an} € Z and each elements A1,..., A\, € M(R) such that
{M1,...,Aml} € 7, we have {\ca; € Z,1 < k < m,1 <1 < n} € Z. The set consisting of
insulators of the ring is insulating.

Theorem 3.8. Let T be an insulating set. Each ideal p C R, which does not contain subsets
which belong to the insulating set and is maximal with respect to this property, is strongly prime.
Elements from T are insulators in R /p.

Metod for the proof can be extracted from the proof of the Theorem.

Corollary 3.9. Each symmetric zero divisor of the ring is contained in some strongly prime
ideal which does not contain an insulator.
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Stipriai pirminiai idealai, stipriai pirminés ir izuoliuojanéios sistemos
Zieduose
A. Kauéikas

] [rodyta, kad stipriai pirminiy Ziedy centrinis uZdarymas yra vienpusés tobulos simetrinés lokalizaci-
Jos. Apibréztos stipriai multiplikatyvios ir izoliuojancios sistemos, kuriy pagalba charakterizuoti stipriai
pirminiai idealai. Rasti stipriai pirminio radikalo ry$iai su kitais Ziedy radikalais.



