A note on functions of exponential type

Antanas LAURINČIKAS* (VU, ŠU) e-mail: antanas.laurincikas@maf.vu.lt

Let $0 < \theta_0 \le \pi$. A function f(s), $s = \sigma + it$, analytic in the closed angular region $|\arg s| \le \theta_0$ is said to be of exponential type if

$$\limsup_{r\to\infty}\frac{\log|f(r\mathrm{e}^{i\theta})|}{r}<\infty$$

uniformly in θ , $|\theta| \leq \theta_0$.

Elements of the theory of functions of exponential type are applied in the investigation of the universality of Dirichlet series, see [1], Chapter 6. For example, the following result is very useful. Let $\mathbb C$ be the complex plane, $\mathcal B(\mathbb C)$ denote the class of Borel sets of the space $\mathbb C$, and let μ be a complex measure on $(\mathbb C, \mathcal B(\mathbb C))$ with compact support contained in the strip $D=\{s\in\mathbb C: 1/2<\sigma<1\}$. Suppose that

$$\varrho(s) = \int\limits_{\mathbb{C}} \mathrm{e}^{-sz} \, \mathrm{d}\, \mu(z)$$

and

$$\sum_{p} \left| \varrho(\log p) \right| < \infty.$$

Then, see Section 6.6.5 of [1],

$$\int_{\mathbb{C}} z^r d\mu(z) = 0, \qquad r = 0, 1, 2, \dots$$

To study the universality, for example, of the function

$$\zeta^2(s)\zeta(2s-1),$$

where, as usual, $\zeta(s)$ denotes the Riemann zeta-function, we need an assertion similar to stated above for a complex measure μ_p depending on prime numbers p. More precisely, let μ be a

^{*}Partially supported by Lithuanian State Studies and Science Foundation.

complex measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with support contained in the strip $D_1 = \{s \in \mathbb{C} : 3/4 < \sigma < 1\}$ and let the function $h : \mathbb{C} \to \mathbb{C}$ be given by the formula

$$h(s) = \frac{s+1}{2}$$
, $s \in \mathbb{C}$.

Denote by

$$\mu_1(A) = \mu h^{-1}(A) = \mu(Ah^{-1}), \quad A \in \mathbb{C}.$$

Then we have that $\mu_p = 2\mu + a_p\mu_1$, $|a_p| = 1$, is a complex measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in the strip D_1 . Define

$$\varrho_p(s) = \int_{\mathbb{C}} e^{-sz} d\mu_p(z).$$

Clearly, the function $\varrho_p(s)$ is a function of exponential type for each prime p.

Theorem 1. Suppose that

$$\sum_{p} \left| \varrho_{p}(\log p) \right| < \infty.$$

Then

$$\int_{\mathbb{C}} z^r d\mu(z) = 0, \qquad r = 0, 1, 2, \dots$$

Proof. Define a number $\alpha > 0$ by

$$\sup_{p} \limsup_{t \to \infty} \frac{\log |\varrho_p(\pm it)|}{t} \leqslant \alpha,$$

and choose a number $\beta > 0$ satisfying the inequality $\alpha \beta < \pi$. Consider the set

$$A = \bigcup_{\substack{p \\ a_p \neq -1}} A_p,$$

where

$$A_p = \Big\{ m \in \mathbb{N}: \ \exists r \in \Big(\Big(m - \frac{1}{4}\Big)\beta, \Big(m + \frac{1}{4}\Big)\beta \Big], \ \text{and} \ |\varrho_p(r)| \leqslant \mathrm{e}^{-r} \Big\}.$$

Then we have

$$\sum_{p} |\varrho_{p}(\log p)| \geqslant \sum_{m \notin A} \sum_{m}' |\varrho_{p}(\log p)| \geqslant \sum_{m \notin A} \sum_{m}' \frac{1}{p}, \tag{1}$$

where \sum_{m}^{\prime} denotes a sum over all prime numbers such that

$$\left(m - \frac{1}{4}\right)\beta < \log p \leqslant \left(m + \frac{1}{4}\right)\beta.$$

Using the well-known formula

$$\sum_{p \leqslant x} \frac{1}{p} = \log \log x + \gamma_0 + e^{-c_1 \sqrt{\log x}},$$

where γ_0 is Euler's constant and $c_1 > 0$, we find that

$$\sum_{m}' \frac{1}{p} = \sum_{p \leqslant \exp\{m+1/4)\beta\}} \frac{1}{p} - \sum_{p \leqslant \exp\{m-1/4)\beta\}} \frac{1}{p}$$
$$= \log \frac{m+1/4}{m-1/4} + B \exp\left\{-c_2\left(\left(m - \frac{1}{4}\right)\beta\right)^{1/2}\right\} = \frac{1}{2m} + \frac{B}{m^2}.$$

Here B is a number bounded by a constant. Hence and from (1) it follows that

$$\sum_{m \notin A} \left(\frac{1}{2m} + \frac{B}{m^2} \right) \leqslant \sum_{p} \left| \varrho_p(\log p) \right| < \infty,$$

and therefore

$$\sum_{m \notin A} \frac{1}{m} < \infty. \tag{2}$$

Let $A = \{a_1, a_2, ...\}$ with $a_1 < a_2 < ...$. Then (2) implies

$$\lim_{m \to \infty} \frac{a_m}{m} = 1. \tag{3}$$

By the definition of the set A there exist a sequence $\{\lambda_m\}$ and a prime number p_0 such that

$$\left(a_m - \frac{1}{4}\right)\beta < \lambda_m \leqslant \left(a_m + \frac{1}{4}\right)\beta$$

and

$$\left|\varrho_{p_0}(\lambda_m)\right| \leqslant \mathrm{e}^{-\lambda_m}.$$

By (3)

$$\lim_{m \to \infty} \frac{\lambda_m}{m} = \beta,$$

and

$$\limsup_{m \to \infty} \frac{\log |\varrho_{p_0}(\lambda_m)|}{\lambda_m} \leqslant -1. \tag{4}$$

Now we will apply one version of the Bernstein theorem, Theorem 6.4.12 from [1]. Let f(s) be an entire function of exponential type, and let $\{\lambda_m\}$ be a sequence of complex numbers. Let α, β and δ be positive real numbers such that

a)
$$\limsup_{t\to\infty} \frac{\log|f(\pm it)|}{t} \leqslant \alpha;$$

b)
$$|\lambda_m - \lambda_n| \geqslant \delta |m - n|;$$

c)
$$\lim_{m \to \infty} \frac{\lambda_m}{m} = \beta;$$

d)
$$\alpha\beta < \pi$$
.

Then

$$\limsup_{m \to \infty} \frac{\log |f(\lambda_m)|}{|\lambda_m|} = \limsup_{r \to \infty} \frac{\log |f(r)|}{r}.$$

Consequently, by (4),

$$\limsup_{r \to \infty} \frac{\log |\varrho_{p_0}(r)|}{r} \leqslant -1. \tag{5}$$

Now we will use Lemma 6.4.10 from [1]. Let μ be a complex measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in the half-plane $\sigma > \sigma_0$. Morevoer, let

$$f(s) = \int_{\mathbb{C}} e^{sz} d\mu(z), \qquad s \in \mathbb{C},$$

and $f(s) \not\equiv 0$. Then

$$\limsup_{r\to\infty}\frac{\log|f(r)|}{r}>\sigma_0.$$

Hence and from (5) we obtain that

$$\varrho_{p_0}(s) \equiv 0.$$

Differentiating the latter equation $r=0,1,2,\ldots$ times, and then putting s=0, we find

$$\int_{C} z^r \, \mathrm{d}\,\mu_{p_0}(z) = 0. \tag{6}$$

Taking r = 0, we have

$$\int_{\mathbb{C}} \mathrm{d}\,\mu_{p_0}(z) = 2\int_{\mathbb{C}} \mathrm{d}\,\mu(z) + a_{p_0}\int_{\mathbb{C}} \mathrm{d}\,\mu_1(z) = (2+a_{p_0})\int_{\mathbb{C}} \mathrm{d}\,\mu(z) = 0.$$

Thus, the equality

$$\int_{\mathbb{C}} z^r \, \mathrm{d}\,\mu(z) = 0 \tag{7}$$

is true for r = 0. If r = 1, then (6) yields

$$0 = 2 \int_{\mathbb{C}} z \, \mathrm{d} \mu(z) + a_{p_0} \int_{\mathbb{C}} z \, \mathrm{d} \mu_1(z)$$

$$= 2 \int_{\mathbb{C}} z \, \mathrm{d} \mu(z) + a_{p_0} \int_{\mathbb{C}} (2z - 1) \, \mathrm{d} \mu(z)$$

$$= (2 + 2a_{p_0}) \int_{\mathbb{C}} z \, \mathrm{d} \mu(z) - a_{p_0} \int_{\mathbb{C}} \mathrm{d} \mu(z).$$

Hence, in view of (7), we have that (7) is true for r=1. The further proof is obtained in a standard induction way.

Theorem 1 is applied to obtain in a standard way the universality of the function $\zeta^2(s)\zeta(2s-1)$.

Theorem 2. Let K be a compact subset of the strip D_1 with connected complement. Let f(s) be a nonvanishing continuous function on K which is analytic in the interior of K. Then for every $\varepsilon > 0$

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T], \sup_{s \in K} \left| \zeta^2(s + i\tau) \zeta(2(s + i\tau) - 1) - f(s) \right| < \varepsilon \right\} > 0.$$

Here $meas\{A\}$ denotes the Lebesgue measure of the set A.

References

[1] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht (1996).

Pastaba apie eksponentinio tipo funkcijas

A. Laurinčikas

Straipsnyje nagrinėjama eksponentinio tipo funkcija, priklausanti nuo pirminių skaičių. Gauta tos funkcijos viena savybė, naudojama universalumo teorijoje.