LMD mokslo darbai, 111 tomas, 75-80
© Matematikos ir informatikos institutas, 1999

On analytic problems of combinatorial structures

Eugenijus MANSTAVICIUS (VU)*

e-mail: eugenijus.manstavicius@maf.vu.lt

Assemblies, multisets, and selections represent the classes of combinatorial structures which
were most intensively studied in recent years (see [1], [4], [10] and other). The neighbouring
arithmetical semigroup theory was also being developed (see [5], [9], [11]). In [7], [8] the author
proposed an analytic approach suitable to find asymptotic formulas for general multiplicative
functions on combinatorial structures. The results were applied to the case of assemblies. We
now extend the investigation [8] by some results valid for multisets, selections, and arithmetical
semigroups.

For start, we point out some ambiguity in the use of terminology. A class S of combinatorial
objects is said [3] to be decomposable over another class P if each element ¢ € S may be
uniquely decomposed into a finite multiset of elements p € P. The last ones are called compo-
nents of o and the very o gains the term of multiset. Note that in contrast to the definition of
assembly (see [1], [9]), we now do not involve any labeling in the structure p. If in the decom-
position of ¢, no repetition of elements p is allowed, such o is called selection. We stress also
that P may be identified with the subset of S comprised of one component and each multiset
{pi, i=1,...,8} C P gives a unique o € S. Therefore one could identify the decomposition
of ¢ into this multiset with the formal product ¢ = p; - - - p, and so define a commutatitive and
associative multiplicationin S. Setting 1 for the empty product, we thus arrive to an arithmetic
semigroup. Either of the concepts of multisets or arithmetic semigroups had been developed
generalizing the set of monic polynomials over a Galois field, nevertheless, recent development
took seemingly different directions. The papers [1], [4], [10] keep on the first concept based
mainly on the terminology of [3] while the papers [S], [9], [12] follow the book [6]. This leads
to some repetition of the results.

For a size function § : S :— N U {0} we assume that |Sy| := |[{c € § : 6(0) =
N}| =: S(N) < oo foreach N € N. Set S(0) = 1. Further, it is natural to require that the
size of o equals the sum of its components sizes and §(p) > 1 for each P. The enumeration
problem requires to derive an asymptotic formula for p(N) from an information concerning
m(j) :=|{p € P : 6(p) = j}|, 5 > 1. It is rather difficult to use the exact formula (see, for
instance, [1], [10])
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for large N.
Considering S an arithmetic semigroup, we define a multiplicative function f by

f(o) = [ £, (1)

pEP

where o, (o) denotes the multiplicity of p in the decomposition of o and f(1) = 1. Now the
asymptotic behaviour of the sum of values f(c) over o € Sy is of great interest.

To reckon the selections from an arithmetical semigroup, one can use the indicator g(c’) of
the set of square-free elements which is multiplicative function defined by (1) with f(p*) =
q(p*) := 1 for k = 1 and zero otherwise. The direct calculations of the number of selections of
size N which equals ([1], [10])
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is also rather complicated.

The purpose of the present remark is to indicate a new possibility to apply our analytic results
[7], [8]. In particular, we will use the following corollary of Theorem 3 proved in [8]. It considers
the asymptotic behaviour as N — oo of the Taylor coefficients my of an analytic in |2| < 1
function having the expression

F(z):= Z myzN =: H(z) exp{U(2)} =: H(z)exp { Zajzj} )
N2>0 21
where a; € C. For a sequence d;, set
D(z) := Z MpzV :=exp { Zdjzj} =:exp{V(2)}.
N>0 izl

Theorem A ([8]). Let F(z) be given in (2) with an analytic in |z| < 1 and continuously dif-
ferentiable on |z| = 1 function H(z) and assume that |a;| < d;, 0 < 0~ < jd; < 8% < oo,
J =2 1. If there exists to € (—m, | such that the series

> (dj —aje™)

izl
converges then
my = My exp {itoN + U(e™*) — V(1) }(H(e™*) + o(1)).

Even used for enumeration problems, Theorem A yields extensions of the recent results
which, typically, were proved under the conditions assuring analytic continuation of generating
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series outside the convergence disk, say, |z| < 7. In many recent papers (see [1], [2], [4], [10]
and the bibliography therein) the regions

{zeC: |z|<r+n,|Arg(z=7)|2m}, 7>0,7>0,0<n <n/2

are taken under consideration. In order to illustrate of our approach, we present a result on the
so-called logarithmic multisets (arithmetic semigroups) and selections.

Theorem 1. Let w(j) = 6p7 /j + p’r(j) with some 6 > 0 and p > 1 so that

> ilr()l < oo (3)

Jj=1

Then
S(N) = pVN*TIT(6) 7 Q(1 + o(1))
and
S(N) = pNN°7IT(9) 1 Q(1 + o(1)).
Here T denotes the Euler gamma function and the constants Q, Q will be given in the proof.

Proof. The generating function of the multiset equals by [1], formula (131),

Z(z) = }: S(N H(1 — 1))
N=0 j=1
=exP{an }:exp{H(z )}K(2)

k=1
where
o .
z)=Z7r(j)z’ = —0log(1 — p2) -!-Zr () (pz)?, |2l <p~t.
i=1 3=
Hence

d ' Ho(2)
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We now apply Theorem A for F(z) = Z(p~!z), a; = d;, U(z) = V(z) = —flog(1 — 2).
As itis known [2], in such a case My ~ NY~1/T'(8) as N — oo. Condition (3) and the estimate

kZ z le(j)lzlfkjk SO ID I AR S N
.___2 ]=

k=2j=1

assures the condition on the derivative of the function H(z) = Ho(p~!z). Thus we obtain from
Theorem A

01 w(j - hd
S(N) = rlzle exp{ZJ e Z }1+o(1)).

In order to find an asymptotic formula for S (N), we start with the expression (see [1], for-
mula (142))

2(z): = i § ﬁ 1+ 27)™0)

N__-O

exp{ﬂ(z)}exp{i f o k)}

k=2

1

in the region |z| < p~! and repeat the previous argumentation. So we obtain the value

00 N i o k=177 =k
O = exp { ZIJW(J)/; i_g 4 Z (-1) kH(P )}.
j=

k=2
Theorem 1 is proved.

Note that strengthening of condition (3) leads to estimates of the remainder terms in the for-
mulas for S(N) and S(V). Generalizing Theorem 1 we examine mean-values of multiplicative
functions on S.

Theorem 2. Let f be a complex-valued multiplicative function defined by (1) on an arithmetical
semigroup S with 7(3) satisfying condition (3). Suppose that

Ifel<r 4)

with some T > 0 such that the series

Y (7= f(p)e 0P p=0@) (5)

pEP
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converges for some to € (—m, | and
ks(p)|f(2*)] )|
Z Z <6(P) < co. ©)
pEP k=2

Then there exist a constants Ay, Az € C such that

= z f(o) = A1pV NO7-1eioN (4, + o(1)).

CESN

Proof. Consider the generating function

G(z) = Y f(0)2* =] (1 + £(p)2°®) + f(p?)2*P 4 .. )
oES peEP
=: H xp(2)
pEP

By the conditions of Theorem 2, we can separate a finite subset P; C P such that [x,(z) — 1| <
1/2forallp € P, = P\ P; uniformly in |z| < p~!. We have

6 = | IT wexe{ - & 109 + 3 (1ogxle)

PEP: PEP: PEP2
—f(@)2°® )t exp$ D f(p)2*®
)] { S0}
= Ki@ep{ TS0} = Kufs)exp{W(2).
pEP

Using the conditions one can verify that the function K (z) analytic in |z| < p~! and continu-

ously differentiable on |z| = p~!. We now apply Theorem A with F(z) = G(p~'z), H(z) =
Ki(p~1z), and U(z) = W(p~'2). The last function is now compared with V' (z) = 7II(p~12).
To find My, which in this case are defined by

Z MyzN = exp{rII(p~'z) = (1 — z) % exp {‘r ir(j)zj },
N=0 ij=1

we again use Theorem A. It yields
NoT-1 o
My~ —— j
N NG exp {Tj;r(])} O

as N — oo. Thus using the notation above from Theorem A we obtain

My (f) = p" My exp{itoN + W(p~ e ") — rTI(p™")} (K1(p™") + o(1)).
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Inserting (7), we end the proof.

Observe that the constant A; in Theorem 2 also has the following expression

ar=renten{ S (( £ s0)oer - )L

i=1 N\ §(p)=j J

A stronger version of Theorem A obtained in [8] yields asymptotic formulas for sums of
multiplicative functions on S under all conditions of Theorem 2 but (5). Asymptotic formulas for
sums of the values of multiplicative functions on the square-free semigroup elements (selections)
follow from Theorem 2. To obtain them, it is enough to change f(o) by the product f(o)q(o).

References

[1] R. Arratia, S.Tavaré, Independent process approximations for random combinatorial structures, Advances in Math.,
104(1), 90~ 154 (1994).

(2] P. Flajolet, A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3(2), 216-240 (1990).

[3] 1. Goulden. D. Jackson. Combinatorial Enumeration, Academic Press, New York (1983).

[4] J. Hansen, Order statistics for decomposable combinatorial structures, Random Structures and Algorithms, 5(4),
517-533(1994).

[5] K.-H. Indlekofer. E. Manstavitius, Additive and multiplicative functions on arithmetical semigroups, Publicationes
Math. Debrecen, 45(1-2), 1-17 (1994). ’

[6] J. Knopfmacher. Analvtic Arithmetic of Algebraic Function Fields. Lecture Notes in Pure and Applied Math., 50,
Marcel Dekker, New York (1979).

[7] E. Manstavitius, A Tauber theorem and multiplicative functions on permutations, In: Number Theory in Progress:
Proceedings of International Conf. on Number Theory in Honor of Andrzej Schinzel, Zakopane, June 30 — July 9,
1997, Part 2: Elementary and Analytic Number Theory, Walter de Gruyter, Berlin, 1025-1038 (1999).

[8] E. Manstavicius, Decomposable mappings on combinatorial structures. Analytic approach (submitted to Combina-
torics, Probab. & Computing. 17 p. (1999)).

[9] E. Manstavitius, R. Skrabuténas, Summation of the values of multiplicative functions on semigroups, Lithuanian
Math. J., 33(3), 330-340(1993).

{10] D. Stark, Total variation asymptotics for independent process approximations of logarithmic multisets and selec-
tions, Randoin Structures and Algorithms, 11(1), 51-80 (1997).

[11] R. Warlimont, Arithmetical semigroups V: Multiplicative functions, Manuscripta Math., 77, 361-383 (1992).

[12] B.-W.Zhang, Mean-value theorems of multiplicative functions on additive arithmetic semigroups, Math. Z, 229,
195-233 (1998).

Dél analiziniy kombinatoriniy struktiiry problemu

E. Manstavicius

Darbe i$pléstos autoriaus analizinio rezultato, irodyto [8] straipsnyje, taikymo sritys. Apibendrintos
kartotiniy aibiy bei atranky skai¢iy asimptotinés formulés, aritmetiniuose pusgrupiuose gauta multip-
likatyviuju funkcijy reik§miy sumy iSraisky.



