On the distributions of additive functions

Jonas ŠIAULYS * (VU)

1. Introduction

We shall consider the distribution functions $\nu_x(f_x(m) < u)$, where $\{f_x(m), x \ge 2\}$ is some set of strongly additive functions and

$$\nu_x (f_x(m) < u) = \frac{1}{[x]} \# \{ m \leqslant x : f_x(m) < u \}.$$

In the papers [2–4] the weak convergence of these functions to the Poisson law was investigated. In this paper we examine the conditions for the weak convergence of $\nu_x(f_x(m) < u)$ to some distribution function F(u). We investigate only those additive functions $f_x(m)$, for which $f_x(p) \in \{0,1\}$ for primes p.

2. The main result

Theorem. Let $\{f_x(m), x \ge 2\}$ be a set of strongly additive functions, $f_x(p) \in \{0, 1\}$ for each prime number p. The distribution function $\nu_x(f_x(m) < u)$ converge weakly as $x \to \infty$ if and only if the finite limits

$$\lim_{x \to \infty} \sum_{\substack{p_1 \leqslant x \\ f_x(p_1) = 1}} \frac{1}{p_1} \dots \sum_{\substack{p_{l-1} \leqslant x \\ p_{l-1} \neq p_1, p_2, \dots, p_{l-2} \\ f_x(p_l) = 1}} \frac{1}{p_{l-1}} \sum_{\substack{p_l \leqslant x/p_1 p_2 \dots p_{l-1} \\ p_l \neq p_1, p_2, \dots, p_{l-1} \\ f_x(p_l) = 1}} \frac{1}{p_l} = g_l$$

exist for each natural number l.

Moreover, in this case the limiting distribution has characteristic function

$$1 + \sum_{l=1}^{\infty} \frac{g_l}{l!} (e^{it} - 1)^l.$$

^{*}Partially supported by Lithuanian State Studies and Science Foundation.

3. The proof of necessity

Let F(u) is the limit distribution function for $\nu_x (f_x(m) < u)$. This function is a distribution function of some discrete random variable with jumps at non-negative integer numbers. Assume that $\varphi_k = F(k+0) - F(k)$. Then from the weak convergence we have

$$\lim_{x \to \infty} \nu_x \big(f_x(m) = k \big) = \varphi_k \tag{1}$$

for each non-negative integer k.

It is clear that $\varphi_{\hat{k}} > 0$ for some \hat{k} . Using the Halász's inequality (see [1])

$$\nu_x\big(h(m)=a\big)\leqslant c_1\bigg(\sum_{\substack{p\leqslant x\\h(p)\neq 0}}\frac{1}{p}\bigg)^{-1/2},$$

which holds for every additive function h(m) and every real number a, we obtain

$$\sum_{\substack{p \leqslant x \\ f_x(p)=1}} \frac{1}{p} \leqslant \frac{4c_1^2}{\varphi_{\hat{k}}^2}$$

for sufficiently large x.

Hence we get

$$\lim_{x \to \infty} \sup_{p \leqslant x} \frac{1}{p} \leqslant c_2,\tag{2}$$

where c_2 may depend on the limit distribution function F(u), and the sign * means that the summation is taken over primes p for which $f_x(p) = 1$.

Let

$$\beta_x(l) = \frac{1}{x} \sum_{m \leqslant x} f_x(m) \left(f_x(m) - 1 \right) \dots \left(f_x(m) - l + 1 \right)$$

for a natural number l.

An easy computation shows that

$$\beta_{x}(l) = \frac{1}{x} \sum_{m \leqslant x} \sum_{p_{1} \mid m} \sum_{\substack{p_{2} \mid m \\ p_{2} \neq p_{1}}}^{*} \dots \sum_{\substack{p_{l} \mid m \\ p_{l} \neq p_{1}, p_{2}, \dots, p_{l-1}}}^{*} 1$$

$$= \frac{1}{x} \sum_{p_{1} \leqslant x} \sum_{\substack{p_{2} \leqslant x \\ p_{2} \neq p_{1}}}^{*} \dots \sum_{\substack{p_{l-1} \leqslant x \\ p_{l-1} \neq p_{1}, p_{2}, \dots, p_{l-2}}}^{*} \sum_{\substack{p_{l} \leqslant x/p_{1} p_{2}, \dots, p_{l-1} \\ p_{l} \neq p_{1}, p_{2}, \dots, p_{l-1}}}^{*} \left[\frac{x}{p_{l} p_{2} \dots p_{l}} \right].$$

$$(3)$$

106 J. Šiaulys

According to the inequality (2) we have

$$\limsup_{x \to \infty} \beta_x(l) \leqslant \limsup_{x \to \infty} \left(\sum_{p \leqslant x} \frac{1}{p} \right)^l \leqslant c_2^l \tag{4}$$

for each l.

Suppose now that l is a fixed natural number and $K \geqslant l + 10$. We have

$$\beta_{x}(l) = \frac{1}{x} \sum_{\substack{m \leq x \\ f_{x}(m) \leq K}} f_{x}(m) (f_{x}(m) - 1) \dots (f_{x}(m) - l + 1)$$

$$+ \frac{1}{x} \sum_{\substack{m \leq x \\ f_{x}(m) > K}} f_{x}(m) (f_{x}(m) - 1) \dots (f_{x}(m) - l + 1) \frac{f_{x}(m) - l}{f_{x}(m) - l}$$

$$= \sum_{k=l}^{K} k(k-1) \dots (k-l+1) \frac{1}{x} \sum_{\substack{m \leq x \\ f_{x}(m) = k}} 1 + \frac{B}{K-l} \beta_{x}(l+1).$$
(5)

It follows from (1) and (4) that

$$\limsup_{x\to\infty} \beta_x(l) = \limsup_{K\to\infty} \sum_{k=l}^K k(k-1)\dots(k-l+1)\varphi_k.$$

According to estimate (4) we see that sequence

$$g_{lK} = \sum_{k=l}^{K} k(k-1) \dots (k-l+1) \varphi_k$$

is increasing and bounded. Therefore the limit

$$g_l = \lim_{K \to \infty} g_{lK} = \sum_{k=l}^{\infty} k(k-1)\dots(k-l+1)\varphi_k$$

exist for each fixed natural l.

Hence from (4) and (5) we have

$$\lim_{x \to \infty} \beta_x(l) = g_l. \tag{6}$$

On the other hand (3) shows that

$$\beta_{x}(l) = \sum_{p_{1} \leq x} {}^{*} \frac{1}{p_{1}} \sum_{\substack{p_{2} \leq x \\ p_{2} \neq p_{1}}} {}^{*} \frac{1}{p_{2}} \cdots \sum_{\substack{p_{l-1} \leq x \\ p_{l-1} \neq p_{1}, p_{2}, \dots, p_{l-2}}} {}^{*} \frac{1}{p_{l-1}} \sum_{\substack{p_{l} \leq x/p_{1}p_{2}, \dots, p_{l-1} \\ p_{l} \neq p_{1}, p_{2}, \dots, p_{l-1}}} {}^{*} \frac{1}{p_{l}} + B \, l! \nu_{x}(\omega(m) = l).$$

$$(7)$$

Since

$$u_x(\omega(m) = l) \sim \frac{(\ln \ln x)^{l-1}}{(l-1)! \ln x}$$

for each fixed natural l (see, for example, [5] Ch.II), we conclude from (6) that the conditions of our theorem are satisfied.

4. The proof of sufficiency

Suppose now that the limit

$$g_{l} = \lim_{x \to \infty} \sum_{p_{1} \leq x}^{*} \frac{1}{p_{1}} \sum_{p_{2} \leq x}^{*} \frac{1}{p_{2}} \dots \sum_{\substack{p_{l-1} \leq x \\ p_{l-1} \neq p_{1}, p_{2}, \dots, p_{l-2}}}^{*} \frac{1}{p_{l-1}} \sum_{\substack{p_{l} \leq x/p_{1}, p_{2}, \dots, p_{l-1} \\ p_{l} \neq p_{1}, p_{2}, \dots, p_{l-1}}}^{*} \frac{1}{p_{l}}$$
(8)

exist for each fixed natural l.

Applying (7) we can assert that

$$\lim_{x \to \infty} \hat{\beta}_x(l) = \lim_{x \to \infty} \beta_x(l) = g_l, \tag{9}$$

where l is a natural number and

$$\hat{\beta}_x(l) = \frac{1}{[x]} \sum_{m \leq x} f_x(m) (f_x(m) - 1) \dots (f_x(m) - l + 1).$$

Let $\psi_x(t)$ is the characteristic function of $\nu_x ig(f_x(m) < u ig)$. It is clear that

$$\psi_x(t) = \frac{1}{[x]} \sum_{m \leqslant x} \mathrm{e}^{itf_x(m)}$$

for $x \geqslant 2$, $t \in \mathbb{R}$.

If r and n are natural numbers, then

$$\left| \mathbf{e}^{itr} - 1 - \sum_{j=1}^{n-1} \binom{r}{j} \left(\mathbf{e}^{it} - 1 \right)^j \right| \leqslant \binom{r}{n} |\mathbf{e}^{it} - 1|^n.$$

Hence

$$\psi_x(t) = 1 + \sum_{l=1}^{L} \frac{(e^{it} - 1)^l}{l!} \, \hat{\beta}_x(l) + \frac{B}{(L+1)!} |e^{it} - 1|^{L+1} \hat{\beta}_x(L),$$

where $L \in \mathbb{N}$.

We obtain from (8) for the case l=1

$$\lim_{x \to \infty} \sum_{p \leqslant x} {}^*\frac{1}{p} = g_1.$$

Repeated application of (8) enables us to write

$$g_l \leqslant \lim_{x \to \infty} \left(\sum_{p \leqslant x}^* \frac{1}{p} \right)^l = g_1^l$$

for each natural number l.

Therefore from (9) we have

$$\psi_x(t) = 1 + \sum_{l=1}^{L} \frac{(e^{it} - 1)^l}{l!} \hat{\beta}_x(l) + \frac{B}{(L+1)!} |e^{it} - 1|^{L+1} g_1^{L+1}, \tag{10}$$

where $t \in \mathbb{R}$, $x \ge 2$ and $L \in \mathbb{N}$.

Inequality $q_l \leq q_1^l$, $l \in \mathbb{N}$, shows that the series

$$\sum_{l=1}^{\infty} \frac{(e^{it} - 1)^l}{l!} g_l$$

converges uniformly to some continuous function $\psi(t)$.

By (10) we obtain

$$\lim_{x \to \infty} \psi_x(t) = \psi(t)$$

for each real number t.

Since $\psi(t)$ is continuous, it follows from the last equality that distribution functions $\nu_x(f_x(m) < u)$ converge weakly to some distribution function F(u), which has its characteristic function $\psi(t)$. This completes the prof.

5. Concluding remarks

It can be seen, that the limit distribution function F(u) from our theorem has some special properties. We can obtain after some calculations the following statements.

- 1. F(u) is distribution function of some discret random variable with jumps at non-negative numbers.
- 2. There exist the factorial moments

$$g_n = \int_{-\infty}^{+\infty} u(u-1)\dots(u-n+1)\mathrm{d}F(u)$$

for each natural n.

3. The factorial moments g_n satisfyy the inequalities

$$q_n \leqslant q_{n-k}q_k, \ k=0,1,\ldots,n-1.$$

4. If $g_l = 0$ for some $l \ge 2$, then $g_1 \le \ln l$.

I am sure that F(u) has more special properties. I think only a few of distribution functions can occur as weak limits in our theorem.

References

- [1] G. Halász, On the distribution of additive arithmetical function. Acta Arith., 27, 143-152 (1975).
- [2] J. Šiaulys, The von Mises theorem in number theory, in: New Trends in Probability and Statistics, 2, Analytic and Probabilistic Methods in Number Theory, F. Schweiger and E. Manstavičius (Eds), VSP, Utrecht/TEV, Vilnius (1992), pp. 293-310.
- [3] Й. Шяулис, Сходимость к закону Пуассона. II, Неограниченные сильно аддитивные функции, Liet. Matem. Rink., 36(3), 393-404 (1996).
- [4] Й. Шяулис, Сходимость к закону Пуассона III, Метод моментов, Liet. Matem. Rink., 38(4), 491-511 (1998).
- [5] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, 46, Cambridge (1995).

Apie adityviųjų funkcijų skirstinius

J. Šiaulys

Darbe gautos būtinos ir pakankamos sąlygos skirstinių

$$\nu_x(f_x(m) < u) = \frac{1}{|x|} \#\{m \leqslant x, f_x(m) < u\}$$

silpnam konvergavimui. Čia $f_x(m)$ yra šeima $(x \ge 2)$ stipriai adityviųjų funkcijų, kurioms $f_x(p) \in \{0,1\}$ visiems pirminiams p.