A multidimensional limit theorem for powers of the Riemann zeta-function

Rasa ŠLEŽEVIČIENĖ (ŠU)

Let $s=\sigma+it$ be a complex variable. The Riemann zeta-function $\zeta(s)$ is defined, for $\sigma>1$, by

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}.$$

Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and let, for T>0,

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas}\{t \in [0,T],\ldots\},$$

where $meas\{A\}$ stands for the Lebesgue measure of the set A, and in place of dots some condition satisfied by t is to be written.

Let k_1, \ldots, k_n be natural numbers, $k = \max(k_1, \ldots, k_n)$ and $D_k = \{s \in \mathbb{C} : 1 - \frac{1}{k} < \sigma < 1\}$. Denote by $H(D_k)$ the space of analitic on D_k functions equipped with the topology of uniform convergence on compacta. Denote by γ the unit circle on \mathbb{C} , i.e. $\gamma = \{s \in \mathbb{C} : |s| = 1\}$, and let

$$\Omega = \prod_{p} \gamma_{p},$$

where $\gamma_p = \gamma$ for each prime number p. Whith the product topology and pointwise multiplication Ω is a compact Abelian topological group. Then there exists the probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$. This yields a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$.

Let $\omega(p)$ stand for the projection of $\omega \in \Omega$ to the coordinate space γ_p . Setting

$$\omega(m) = \prod_{p^{\alpha} \mid \mid m} \omega^{\alpha}(p),$$

where $p^{\alpha}||m$ means that $p^{\alpha}|m$, but $p^{\alpha+1} \nmid m$, we obtain an extension of $\omega(p)$ to the set $\mathbb N$ as a completely multiplicative unimodular function. Define on the probability space $(\Omega, \mathcal B(\Omega), m_H)$ an $H(D_k)$ -valued random element

$$\zeta^k(s,\omega) = \sum_{m=1}^{\infty} \frac{\omega(m)d_k(m)}{m^s}, \quad s \in D_k, \ \omega \in \Omega,$$

where
$$d_k(m) = \sum_{m=m_1m_2...m_k} 1$$
.
Let n be a natural number and $H^n(D_k) = \underbrace{H(D_k)...H(D_k)}_n$. Define on $(\Omega, \mathcal{B}(\Omega), \mathcal{B}(\Omega))$

 m_H) an $H^n(D_k)$ -valued random element

$$\zeta_n(s,\omega) = (\zeta^{k_1}(s,\omega), \zeta^{k_2}(s,\omega), \dots, \zeta^{k_n}(s,\omega)),$$

and let P_{ζ_n} denote the distribution of $\zeta_n(s,\omega)$.

We will prove a limit theorem for the probability measure

$$P_T(A) = \frac{1}{T} \operatorname{meas} \left\{ t \in [0, T], \left(\zeta^{k_1}(s + i\tau), \zeta^{k_2}(s + i\tau), \dots, \zeta^{k_n}(s + i\tau) \right) \in A, \right.$$
$$\left. A \in \mathcal{B}(H^n(D_k)) \right\}.$$

Theorem. The probability measure P_T converges weakly to P_{ζ_n} as $T \to \infty$.

Lemma 1. The probabality measure

$$\nu_T(\zeta^k(s+i\tau)\in A), \quad A\in \mathcal{B}(H(D_k)),$$

converges weakly to the disribution of the random element $\zeta^k(s,\omega)$ as $T\to\infty$.

Proof. The proof of Lemma 1 is similar to that of analogous statement for k = 1. Therefore we will give the sketch of proof only. We begin the proof of the Lemma 1 by a limit theorem for Dirichlet polynomials

$$p_{n,k}(s) = \sum_{m=1}^{n} \frac{d_k(s)}{m^s}.$$

Let G denote some open subset of \mathbb{C} . Define a probability mesaure on $\big(H(G),\mathcal{B}(H(G))\big)$ by

$$P_{T,p_n,k}(A) = \nu_T(p_{n,k}(s+i\tau) \in A), \quad A \in \mathcal{B}(H(G)).$$

Then we prove that there exists a probability measure $P_{p_n,k}$ on $(H(G),\mathcal{B}(H(G)))$ such that the probability measure $P_{T,p_n,k}$ converges weakly to $P_{p_n,k}$ as $T\to\infty$. After this we define

$$p_{n,k}(s,g) = \sum_{m=1}^{n} \frac{d_k(s)g(m)}{m^s}$$

and

$$\widetilde{P}_{T,p_n,k}(A) = \nu_T(p_{n,k}(s+i\tau,g) \in A), \quad A \in \mathcal{B}(H(G)),$$

where g(m) is an unimodular completely multiplicative function, and show that the probability measures $P_{T,p_n,k}$ and $\widetilde{P}_{T,p_n,k}$ converge weakly to the same measure as $T\to\infty$.

Now we prove a similar assertion for absolutely convergent Dirichlet series. Let $\sigma_1 > 1 - \frac{1}{k}$, $k \ge 2$. We define the function

$$l_n(s) = \frac{s}{\sigma_1} \Gamma\left(\frac{s}{\sigma_1}\right) n^s, \quad n \in \mathbb{N}$$

in the strip $-\sigma_1 \leqslant \sigma \leqslant \sigma_1$. Here $\Gamma(s)$ stands for the Euler gamma-function. Suppose $\sigma > 1 - \frac{1}{k}$ and

$$\zeta_{2,n,k}(s) = \frac{1}{2\pi i} \int_{\sigma_1 - i\infty}^{\sigma_1 + i\infty} \zeta^k(s+z) l_n(z) \frac{\mathrm{d}z}{z}.$$

We approximate by mean the function $\zeta^k(s)$, i.e. if K be a compact subset of the half-plane $\sigma > 1 - \frac{1}{k}$, then

$$\lim_{n\to\infty} \overline{\lim_{T\to\infty}} \int_{0}^{T} \sup_{s\in K} \left| \zeta^{k}(\sigma+i\tau) - \zeta_{2,n,k}(s+i\tau) \right| d\tau = 0.$$

Let

$$\zeta_{2,n,k}(s,\omega) = \sum_{m=1}^{\infty} rac{d_k(m)\omega(m)}{m^s} \exp\left\{-\left(rac{m}{n}
ight)^{\sigma_1}
ight\}.$$

We define two probability measures on $\big(H(D_k),\mathcal{B}(H(D_k))\big)$

$$\begin{split} P^1_{T,n,k}(A) &= \nu_T \big(\zeta_{2,n,k}(s+i\tau) \in A \big), \\ Q^1_{T,n,k}(A) &= \nu_T \big(\zeta_{2,n,k}(s+i\tau,\omega) \in A \big), \end{split}$$

and show that both these probability measures converge weakly to the same probability measure $P_{n,k}^1$ as $T \to \infty$.

Let Ω_1 be a subset of Ω such that for the $\omega \in \Omega_1$ the series

$$\sum_{m=1}^{\infty} \frac{\omega(m) d_k(m)}{m^s}$$

converges uniformly on compact subsets of D_k and for $\sigma>1-\frac{1}{k}$ the estimate

$$\int_{0}^{T} |\zeta^{k}(\sigma + it, \omega)|^{2} dt = BT$$

is valid. Let

$$Q_{T,k}(A) = \nu_T (\zeta^k(s+i\tau,\omega_1) \in A), \quad A \in \mathcal{B}(H(D_k)).$$

Then we prove that there exists a probability mesure P_k^1 on $(H(D_k), \mathcal{B}(H(D_k)))$ such that both the probability measures $P_{T,k}$ ir $Q_{T,k}$ converge weakly to P_k^1 as $T \to \infty$.

Then using this fact and applying elements of ergodic theory we complete proof of the Lemma 1, proving that P_k^1 is the distribution of $\zeta^k(s,\omega)$.

Let S and S_1 be two metric spaces and let $h: S \to S_1$ is measurable function. Then every probability measure P on $(S, \mathcal{B}(S))$ induces on $(S_1, \mathcal{B}(S_1))$ the unique probability measure Ph^{-1} defined by equality $Ph^{-1}(A) = P(h^{-1}A), \quad A \in \mathcal{B}(S_1)$.

Lemma 2. Let $h: S \to S_1$ be a continuous function. If P_n converges weakly to P, then $P_n h^{-1}$ coverges weakly to Ph^{-1} as $n \to \infty$.

Proof can be found [1].

Lemma 3. The family of probability measures $\{P_T, T > 0\}$ is relatively compact.

Proof. From Lemma 1 the probability mesure

$$P_{T,k_i}(A) = \nu_T(\zeta^{k_i}(s+i\tau) \in A), \quad A \in \mathcal{B}(H(D_k)),$$

converges weakly to the distribution of the random element $\zeta^{k_i}(s,\omega)$ as $T\to\infty$. From this it follows that the family of the probability measures $\{P_{T,k_i},T>0\}$ is relatively compact. Since $H(D_k)$ is a complete separable space, hence we obtain by the second Prochorov theorem that the family $\{P_{T,k_i}\}$ is tight, i.e. for an arbitry $\epsilon>0$ there exists a compact set $K_k\subset H(D_k)$ such that

$$P_{T,k_i}(H(D_k)\backslash K_{k_i}) < \frac{\epsilon}{n} \tag{1}$$

for all T>0. Define on a probability space $(\widetilde{\Omega},\mathcal{F},Q)$ a random element η_T by

$$Q(\eta_T \in A) = rac{1}{T} \int\limits_0^T I_A \mathrm{d}t, \quad A \in \mathcal{B}(\mathbb{R}),$$

where A is the indicator function of set A. Consider the $H(D_k)$ -valued random element

$$\zeta_{T,k_i}(s) = \zeta^{k_i}(s + i\eta_T),$$

and let

$$\zeta_T(s) = (\zeta_{T,k_1}, \zeta_{T,k_2}, \dots, \zeta_{T,k_n}).$$

Then, by (1)

$$Q(\zeta_{T,k_i}(S) \in H(D_k) \backslash K_{k_i}) < \frac{\epsilon}{n}.$$

Let $K = K_{k_1} \times K_{k_2} \times \ldots \times K_{k_n}$, then

$$\begin{split} &P_T\big(H^n(D_k)\backslash K\big) = Q\big(\zeta_T(s) \in H^n(D_k)\backslash K\big) \\ &= Q\left(\bigcup_{k=1}^n (\zeta_{T,k_i}(s) \in H^n(D_k)\backslash K)\right) \leqslant \sum_{k=1}^n Q\big(\zeta_{T,k_i}(s) \in H^n(D_k)\backslash K\big) < \epsilon \end{split}$$

for all T > 0. Consequently, the family $\{P_T\}$ is tight. From the first Prokorov theorem it is relatively compact. Lemma 3 is proved.

Let $s_1, \ldots, s_r \in D_k$, $\widetilde{D} = \{s \in \mathbb{C}, \sigma > 1 - \frac{1}{k} - \min_{1 \le l \le r} \Re s_l\}$, $u_{kl} \in \mathbb{C}$, where $1 \le k \le n$, $1 \le l \le r$. Define a function $h : H^n(D_k) \to H(\widetilde{D})$ by the formula

$$h(f_1,\ldots,f_n) = \sum_{l=1}^n \sum_{l=1}^r u_{kl} f_k(s_l+s), \quad s \in D_k, \ f_j \in H(D_k), \ j=1,\ldots,n.$$

Morever, let

$$\zeta_h(s) = h(\zeta^{k_1}(s), \zeta^{k_2}(s), \dots, \zeta^{k_n}(s)).$$

The functions $\zeta_h(s)$ and $\zeta^k(s)$ have the same analytic properties. Therefore, reasoning similary as in the proof of Lemma 1, we obtain

$$\zeta_h(s+i\eta_T) \xrightarrow{\mathcal{D}} h(\zeta_n(s,\omega)).$$
 (2)

Proof of Theorem. By Lemma 3 there exists a squence $T_1 \to \infty$ such that P_{T_1} converges weakly to some probability measure P. Let P is the distribution of $H^n(D_k)$ -valued random element

$$\widetilde{\zeta}(s) = (\widetilde{\zeta}_1(s), \dots, \widetilde{\zeta}_n(s)),$$

i.e.

$$\zeta_{T_1} \xrightarrow[T_1 \to \infty]{\mathcal{D}} \widetilde{\zeta}.$$

Hence and from Lemma 2 we have that

$$h(\zeta_{T_1}) \xrightarrow[T_1 \to \infty]{\mathcal{D}} h(\widetilde{\zeta}),$$

or

$$\zeta_h(s+i\eta_{T_1}) \xrightarrow[T_1\to\infty]{\mathcal{D}} h(\widetilde{\zeta}).$$
 (3)

Then by (2)

$$\zeta_h(s+i\eta_{T_1}) \underset{T_1 \to \infty}{\overset{\mathcal{D}}{=}} h(\zeta_n). \tag{4}$$

Now it follows from (3) and (4) that

$$h(\zeta_n) \stackrel{\mathcal{D}}{=} h(\widetilde{\zeta}). \tag{5}$$

Let a function $h_1: H(\widetilde{D}) \to \mathbb{C}$ be given by the formula

$$h_1(f) = f(0), f \in H(\widetilde{D}).$$

Then from (5) we have

$$h_1(h(\zeta_n)) \stackrel{\mathcal{D}}{=} h_1(h(\widetilde{\zeta})),$$

or

$$h(\zeta_n)(0) \stackrel{\mathcal{D}}{=} h(\widetilde{\zeta})(0).$$

This yields

$$\sum_{k=1}^{n} \sum_{l=1}^{r} u_{kl} \zeta^{k}(s,\omega) \stackrel{\mathcal{D}}{=} \sum_{k=1}^{n} \sum_{l=1}^{r} u_{kl} \widetilde{\zeta}_{k}(s_{l})$$

$$\tag{6}$$

for arbitrary $u_{kl} \in \mathbb{C}$.

Hiperplanes in the space \mathbb{R}^{2nk} form a determining class. Therefore, the hiperplanes also form a determining class in the space \mathbb{C}^{nk} . Taking into account (6), we obtain that the random elements $\zeta^k(s,\omega)$ and $\widetilde{\zeta}_k(s_l)$ have the same distribution.

Let K be a compact subset of D_k , $f_1, \ldots, f_n \in H(\widetilde{D})$, and let a sequence $\{s_l\}$ be dense in K. For an arbitrary $\epsilon > 0$ we set

$$G = \left\{ (g_1, \dots, g_n) \in H^n(D_k) : \sup_{s \in K} |g_j(s) - f_j(s)| \le \epsilon \right\}, \quad j = 1, \dots, n,$$

$$G_r = \left\{ (g_1, \dots, g_n) \in H^n(D_k) : |g_j(s) - f_j(s)| \le \epsilon \right\}.$$

From the properties of random elements $\zeta^k(s,\omega)$ and $\widetilde{\zeta}_k(s_l)$ it follows that

$$m_H(\omega \in \Omega : \zeta_n(s,\omega) \in G_r) = P(\widetilde{\zeta}(s) \in G_r).$$
 (7)

Since the sequence $\{s_l\}$ is dense in K, we have $G_1\supset G_2\supset\ldots$, and $G_l\to G$ as $l\to\infty$. Thus, letting $r\to\infty$ in (7) we find

$$m_H(\omega \in \Omega : \zeta_n(s,\omega) \in G) = P(\widetilde{\zeta}(s) \in G).$$

From this we have

$$\zeta_n \stackrel{\mathcal{D}}{=} \widetilde{\zeta}.$$

Thus

$$\zeta_{T_1} \xrightarrow[T_1 \to \infty]{\mathcal{D}} \zeta_n.$$

These means that the probability measure P_T converges weakly to the distribution of the random element ζ_n as $T_1 \to \infty$. Since $\{P_T\}$ is relatively compact and random element ζ_n is independent of the choice of the sequence T_1 the assertion of the theorem follows.

References

- [1] P. Billingsley, Convergence of Probability Measures, John Wiley, New York (1968).
- [2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-function, Kluwer, Dordrecht, Boston, London (1996).

Daugiamatė ribinė teorema Rymano dzeta funkcijos laipsniams

R. Šleževičienė

Straipsnyje įrodoma daugiamatė ribinė teorema Rymano dzeta funkcijos laipsniams analizinių funkcijų erdvėje.