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1. Introduction

A traditional calculus of intuitionistic first-order logic contains the rules (O—) and (V —) the
main formulas of which are duplicated in the premises of these rules. It is inconvenient for
computer-based proof search.

As it was discovered by Vorob'ev [7,8], there exists a sequent proof search algorithm allow-
ing to avoid duplication of the main formula E D B, where E is an atomic formula, in the rule
(D). This idea was extended in the later works [3, 4, 5].

In the paper, we give an intuitionistic first-order sequent calculus LBJ with the rules (D—
), (Vv =), and present a partial solution to the problem arising owing to the rules (2—), (¥ —).
As far as the rule (O—) is concerned, we mainly base our investigation on the work [4].

2. Calculus LBJ

Constructing the calculus LBJ, we use an intuitionistic variant of a sequent calculus—LJ—
without the structural rules:

1. Axioms:T,FE - E; I, F - A
2. Derivation rules:

' A—-B ADB,'—=A;BI'—»A
T—ASB (—D2) ASBI—A (3_’)
Fr—-AI'—B A,BT—A
T=arg (&N AABr=a (A )
r-Aorr—B Al'-A:Bl—-A
TmavE— (™ V) WBr-a (V)

F—A(b) A(t),VzA(z),[—=A
T—=VzA(z) (_’ V) VIAIiz.';,I‘ﬁA (V _’)

P—A(t A(b).T—=A

oy (23 ares G-
Here: F denotes ‘false’; E denotes an atomic formula; A, B denote arbitrary formulae; A €
{0, D} (D is an arbitrary formula); I' denotes a finite, possibly empty, multiset of formulae; =
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denotes a bound variable; t denotes a term (expressions in which bound variables occur are not
assumed to be terms); in the (Y —), (— 3) rules, A(z) is obtained by substituting  for at least
one occurrence of ¢ in A(t); b denotes a free variable which does not occur in conclusions of the
rules (— V), (3 —), and A(x) is obtained, in these rules, by substituting z for every occurrence
of biin A(b); we use different letters to denote free and bound variables so that a variable can be
only free or only bound; we do not have rules for negation: =4 =g,y A D F.

The calculus LBJ is obtained from the calculus LJ by adding the following rules for handling
the operators 0, ¢, O:

r—a r—
mor=o4 (O1) Mor=a (02)

ar.c—p or,c—
Toroc=0oD (01) TOroc=a (02)

r—A

I‘:OA (= 01) EI_TTOOQAA (= 02)

ALSHQIAIA (o) Bty ()

A,004,I—>A F—AT—00A

“Tar=a_ (O—) —roma - (
Here: ', A, Aare asinLJ;if ' = A;, Ay,..., Ay, then o = 0Ay,0A4,,...,0A,, where g €
{Q, o}; C, D denote arbitrary formulae; IT denotes an arbitrary finite, possibly empty, multiset
of formulae. The rule (— O) corresponds to the weak induction axiom: (4 A o0A) D OA.

The definition of derivation is common (see e.g. [6]). We denote derivations and heights

of the derivations by V' and h(V') ( V may be with an index, an asterisk, one or two primes)
respectively.

—-)D)

3. Specialization of the (D—) rule

A calculus LBJT is obtained from the calculus LBJ by substituting the following

B.ET—A aC>(aDDB).T—A
E5BET=a (£ D) =(CAD)SBT=A (@ D—)
BCOB.BDOBI—A C,D3B'—D,BT—A
B(CvD)SBI=a (B 2—) ©>by>Br~5— (22—)
F—OA’;BI—A Vz(A(z)DB) T—A

S5AisBr=a (0 2-) Az 5B F=4a (3 D)

A* D> BT —-A%BT-A
A* DB l'—- A

(x >-)

Here: E denotes an atomic formula; o = ajay...an, wheren > 0, a; € {0, 0,Vz;}, =i
denotes any bound variable, 1 < ¢ < n; 8 = B1Ba...08m, B; € {3z;}, where m > 0, z;
denotes any bound variable, 1 < j < m; A’ # a(C A D), where « is defined as above;
A* € {oE.o(C V D),o(C > D),03zC,0ovzC,0'(C A D)}, where 0 = 0,05 ...0,, where
n 2 1,0; € {0, 0,Vz;}, z; denotes any bound variable,1 < i < n;0’ = ¢oro’ = 0104 ...0},,
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where m > 2, o € {o,0, 0,3z;,Vz;}, x; denotes any bound variable, 1 < j < m, 0] # o,
and ¢ occurs in o’.

In some proofs, we use complexity of formulae which is denoted by G and defined as follows:

DG(E)=0,G(F) =0;

2)G(BVD)=G(B>D)=G(B)+G(D)+1;

3)G(BA D) =G(B)+G(D) +2;

4)G(VzB(z)) = G(B(t)) + 1, where t denotes an arbitrary term, B(t) is obtained by substi-
tuting ¢ for every occurrence of z in B(z);

5) G(3zB(z)) = G(B(t)) + 2, where t denotes an arbitrary term, B(t) is obtained by
substituting ¢ for every occurrence of = in B(z);

6) G(ocB) = G(B) + 1, where o € {0, 0};

7)G(0A) = G(A), if A=0OBor A = 0B, otherwise G(0A) = G(A) + 1; here: E denotes
an atomic formula; B, D denote arbitrary formulae; z denotes a bound variable.

Lemma 3.1. Let (W —) denote the structural antecedent—and (— W) succedent—weakening
rule, then

1) if (LBJT + (W —)) FY S, then there exists a derivation V' such that LBJT V' S
and h(V') < h(V).

2) if (LBJT + (— W)) Y S, then there exists a derivation V' such that LBJT FV' S
and h(V') < h(V);

Proof. See [1].

Lemma 3.2. Let (1) € {(7 >-), (—*3)7 (—" A)’ (A _’)» (V _’)’ (_’ v),(Y =),(3 =), (=
0), (0 —)}, where v € {E, a, 8, D, 0,3, *} and S be a sequent having the shape of the conclu-
sion of the rule (i). Let S' be the sequent having the shape of a premise of the same rule (i), we
take only the right premise for (i) = (0 D—), (1) = (DD—), (i) = (* D—) and only the left
premise for (i) = (— O), (i) = (0 —), then if LBJT VS, then there exists a derivation V'
such that LBJT V" S" and h(V') < h(V).

Proof. See [1, 4].
Lemma 3.3. The rules (0 —), (— 0), (0 —) are invertible in LBJT.
Proof. See [1].

Lemma 3.4. A sequent of the type T, A — A, where A is an arbitrary formula, is derivable in
LBJT.

Proof. The Lemma is proved by complexity of formulae.

Lemma 3.5. The rule

r-BT''D-A
I''BoD—-A
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is admissible in LBJT.

Proof. The lemma is proved by induction on the ordered pair (G(B), h), where G(B) denotes
the complexity of the formula B, and h denotes the height of derivation of the first premise. For
the details, see [4].

Lemma 3.6. The rule

I,(C>B)DD—A
ILC,BoD,BoD—A

is admissible in LBJT.
Proof. See [4].

Lemma 3.7. The rule

oB>D,I'-0B;D,T - A
oB>D,I' - A

where B # a(By A Bz), where a is as in the (o D—) rule, is admissible in LBJT.
Proof. The lemma is proved by induction on the height of the derivation of the first premise.

Theorem 3.8. The contraction rule

AAT - A
AT - A

is admissible in LBJT

Proof. The lemma is proved by the ordered pair (G(A), h(V')), where G(A) denotes the com-
plexity of the contraction formula, and h(V') denotes height of derivation of the conclusion of
the contraction rule. For the details, see [4, 1].

Lemma 3.9. The rule

ADB T - ABT—-A
ADBTI'—- A

is admissible in LBJT.

Proof. We weaken the second premise with A O B, use Lemma 3.5, and contract the formula
ADB.
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It follows from the previous lemma that all LBJ rules are admissible in LBJT. As weakening,
contraction and cut are admissible in LBJ (see [1]), it is straightforward to prove that all LBJT
rules are admissible in LBJ. So we have the following theorem:

Lemma 3.10. The calculi LBJ and LBJT are equivalent.
The following theorem follows from this theorem:

Theorem 3.11. The cut rule is admissible in LBJT.

4. Specialization of the (V —) rule

Let us assume that I'* is such a multiset of formulae in which O and formulas of the type o A’,
A* do not occur in the left scope of D, where 0 A’ and A* are as in the (* D—), (0 D—)
rules; A* is an empty set or a formula in which A, ¥, O can occur only in the left scope of D,
and D, in whose left scope occurs at least one D or a formula of the type oA’ or A* (A’ and
OA* are as above), does not occur in the left scope of D. Further, let us assume that if an atomic
formula occurs in the left scope of > in I'* or A*, then this atomic formula can occur only as a
subformula in an implication formula in T'* or A*. The sequent I'* — A* is called a o-sequent.

First notice that if a conclusion of any LBIT rule is a o-sequent, then the premise of this rule
is a o-sequent, as well.

Lemma 4.1. Ifa o-sequent is derivable in LBJT and T # 0, then there exists a formulaG inT
such that LBJT - G — A

Proof. By induction on height of derivation of ' — A

Theorem 4.2. A o-sequent Yz A(z),T' — A is derivable in LBJT iff, for some term t, the se-
quent A(t),T’ — A is derivable in LBJT.

Proof. The theorem is proved by height of derivation of VzA(r),I — A, using Lemma 4.1.
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Intuicionistinés laiko logikos su laiko tarpais sekvencinio skai¢iavimo
cikliniu taisykliu specializacija

R. Alonderis

Straipsnyje nagrinéjama intuicionistinés laiko logikos su laiko tarpais sekvencinio skaigiavimo cikliniy
taisykliy specializacijos problema. Cikliné implikacijos antecedente taisyklé kei¢iama keliomis kitomis
taisyklémis, dalinai i$sprendZiant Sios taisyklés cikli§kumo problema. Nurodomos salygos, kurioms esant
galima atsisakyti visuotinumo kvantoriaus antecedente taisyklés pagrindinés formulés dubliacijos, irodomy
sekvencijy klasei i§liekant nepakitusiai.



