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1. Introduction

Suppose that individuals come from one of two mutually exclusive and exhaustive populations
1, Qg, with positive prior probabilities 7y, 7o, respectively, where Y2 m=1LletX e
X C RP be a random feature variable which is measured on each individual. Assume that the
distribution of X for the individual from €, ¢ = 1, 2 has the probability density function (p. d.
£) p(z; ©;) which belongs to the exponential family of densities F' = {p(z; ©),© € K c R™},
(see e.g., Barndorff - Nielsen, 1988).

This family includes many popular distributions (e.g., normal, Weibull, gamma, binomial,
etc.). The MLE for © is a sufficient statistic in an exponential family, and achieves the Cramer -
Rao lower bound if we have chosen the right function of © to estimate.

Suppose that there are m; elements of all {©;} known a priori to be distinct and let

6o be the vector of mg elements known a priori to be equal, ie., ©; = (0(/,,0/ ) =
(65, ...,6%,6},...,67™), where 65 # 6% fori # 7, (G,j = 1,2 k = 1,...,my), and
Mo + m; = m. The prime denotes vector transpose.

The Einstein summation convention will be adopted in this paper.

Denote by a an n-dimensional vector (n = mg + 2m;), which consists of 8y and (81, 65),
Le.,

/
a=(0§,0{,0{,) =(a!,...,a"). (1

Let P C R"™ be the set of all possible o, such that ©; € K (i = 1, 2).

Further, the dependence of any functions on any distribution parameters will be suppressed
in the cases when functions are evaluated at the true values of these parameters denoted by
asterisk *,e.g., pi(z;©7) = p.(x) A decision is to be made as to which population an individual

randomly chosen from Q = U §2;, belongs on the basis of an observed value of X. Let d(-, a)

denote a classification rule (CR) formed for this purpose, where d(z,a) = ¢ implies that an
individual with feature vector X = z is to be assigned to the population €; (i = 1, 2). In effect,
CR divides the feature space X into L mutually exclusive and exhaustive assignment regions
U1, Uy, where if X falls in U;, then the individual is allocated to €; (i = 1,2). Let C(4,5)
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denote the cost of allocation when an individual from §2; is allocated to §2; and let C(3, 5) be
nonnegative and finite, ¢, j = 1, 2.

When prior probabilities {m;} and densities {pi(x)} are known, the risk R(d(:, «)) associ-
ated with rule d(-, &) can be expressed as

2
N=3m /x Cli, d(z, a))pi(z)dz. @

Then Bayes classification rule (BCR) dg(z, a*) = dp(x) minimising the risk R(d(:, )) is
defined as

dp(z) = arg max Lipi(x), €)
where
L=m(C343-1)-C(i,1)), (i=1,2). )

Therefore, Bayes risk Rg(z, o*) = Rp of dp(z) is

R = Z’“ [ Clds)pi@rda= int R(0), ®

where D is the set of all CR d(-) defined before.

The risk becomes the probability of misclassification (PMC) when C (3, j) = 1 — &;;, where
6;; is the Kronecker’s delta.

In practical applications, the density functions {p;(z)} are seldom completely known. Often
they are only known up to the parameters {6}, i.., we can only assert that p;(z) is an element of
the parametric family of density functions F;. Under such conditions, it is customary to estimate
unknown parameters from given data.

Suppose that in order to estimate unknown parameters ©1, O, there are M individuals of
known origin on which feature vector X has been recorded. That data is referred to in pattern
recognition literature as training sample (TS). Only the case of independent observations in TS
will be considered in this paper. Suppose that TS realized under separate sampling (SS) design.
This sample often is called stratified sample. Then the feature vectors are observed for a sample
of M; individuals taken separately from each population Q; (i = 1, 2).

The so-called estimative approach to the choice of sample-based classification rule is used.
The unknown « is replaced by appropriate estimate & based on TS in the BCR and plug-in rule
dp (z,@) is obtained. The case when mo = 0 means that all components of ©; are distinct for
both populations.
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The actual risk for the rule d g (z, @) is the risk of classifying a randomly selected individual
with feature X and is designated by

2
Ra(@) =;m /x C(i,dp(z, @)pi(z) de. ©)

For C(i, ) = 1 — &;;, the actual risk becomes the actual error rate (AER), which is usually
used for evaluation of performance of a plug-in rule.
It is obvious that R4(a*) = Rp, where o* is the true value of a.

DEFINITION. Regret risk (RR) for dg (z,@) is the difference between the actual risk R 4(@)
and Bayes risk R, and the expected regret risk (ERR) is the expectation of RR, i.e.,

ERR(a) = Er{Ra(@)} - R5, (M
where Er{R 4(@)} denotes the expectation with respect to TS distribution.

It is obvious from (4), that RR is nonnegative random variable.

Unfortunately, the exact distributions of RR usually are difficult to obtain. In those cases,
large sample approximations to an asymptotic expansions for the distributions and expectations
of RR are required.

The purpose of this paper is to find second-order asymptotic expansions of ERR with re-
spect to inverses of training sample sizes, when bias-adjusted MLE of unknown parameters of
distributions from exponential family are used. These are used to evaluate the performance of
sample-based CR and to find the optimal training sample allocation.

This is an extension of the result of Dutinskas (1995), who presented the first-order asymp-
totic expansion of expected error regret in the situation when parameter vectors of distributions,
being classified, a priori had different all components. Neil (1980) has found the general asymp-
totic distribution of AER for the classification into one of two populations.

Taniguchi [4] presented sufficient conditions for the plug-in CR to be first- and second-order
asymptotically best for the discriminant analysis in exponential families of distributions.

The general asymptotic distribution of RR and the first-order asymptotic expansion of ERR
in case of several populations and MLE of unknown parameters of distributions, being classified,
are derived in paper of Duginskas (1997). The general second-order asymptotic expansion of
EER in classification of one parametric distributions was obtained by Ducinskas (1999).

2. Notation and assumption

Let V,, be the vector partial differential operator given by

d d " 78 \?
/(92 9 2 _ 2
7 (3&1’”"&!") and |V, Z(@ai)

i=1
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forany a = (a?,...,a™) € R™.
Similarly, V2 denotes the matrix second-order differential operator

32
Oatlad

,3=1,...,n

Let 8;, = 33 82 = ~§— ...and G(z) = Lhpi(z) — lopa(z), T = {1: :z € RP,G(z) =
0}.
Suppose that & = (@'é, 5{ , 54) € P is a nonrandom point in a neighbourhood of o* and

let L be the loglikelihood based on TS. Set I = Er {VOLV{.L} /N and let I'/ be the (i,)

element of I~1.
To develope the asymptotic theory of R(&) one needs the following assumption S:

S1. R(a) is five times differentiable with respect to & in a neighbourhood of a*;

S2. M, = N, My = cN, where c is a fixed positive constant;

S3. E(@) — a* = o(1) and 8; = 8/0a* and E are interchangeable;

S4. Let Py be the probability distribution of VN (@ — ) ( = v, say). Then it holds that for
every bounded, Borel - measurable function f of v on R",

| [ (P - )] = o(v72),

where Fy = Fy (v) is the formal Edgeworth expansion of v = VN (& -a*).

Suppose that &ps is MLE of a based on TS and let

ay —a*=2"+Q'/VN +o, (N—l/z)’
B (& —a%) = (@) [N +0(N2), i=1....n,

where Zi = I'18;L/VN, Q' = 0, (1), p* (a*) = E{Q*}.
Then bias-adjusted MLE @, is defined by

& =&y, —p(@/N, i=1,...,n

Explicit expressions of {Q‘} are presented in Taniguchi (1994). In this paper the author also
proved, that bias-adjusted MLE &, minimizes. EER (&) up to O (N~2) in the some class of
bias-adjusted estimators. The closed-form expressions for the coefficients of the second-order
asymptotic expansion of EE R (&,) is derived in the following theorem.
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Theorem. Let the regularity assumption S hold. Then
~ 1 -1
EER(a,) = 3N /1" 6¢G(’),~G|VIG| dvy
1 -1 o
+ W(A&G@G[V,GI dyeov (Q*, Q7)
+ Rijic% /3 + Rijpa(I9 I + IR 4 [ I9F) /12) +0o(N7?),
where

8,0,6u R = / (8.0,(04G - G) + 2(8:8,0:C - 62,G/(85,C)
r
— 8:,(0:0,0:G)) )| V=G| " d,
8:0,000R = / (0:0,04(81G - G) + 2(8:0;0(BG - G?) - 82, G /(8:, G)?
r

—~ 8., (8:8;0¢(8,G - G?)/8,,G) + 3(82,(8:G8;GB:GA,G)
—(30,(8:G8;GOGAG) - B2, G+(0:G8;GBGOG) . G) /0., G
+3(8:G9;G0,GAG)(82,G)2/(8:,G)?)) - (8:,G?|V.G|) ""dv,

Ik = (I'a 7% + ' + 1Mo I — Br(2°292%)) /2.

Proof. The proof of Theorem is based on the fifth-order Taylor expansion of EER (@) in
some neighbourhood of a*. By taking the expectation according to the distribution of TS of this
expansion and using the results of Lemma 2 of [6] and Theorem 2 of [4] the proof of stated
Theorem is completed.
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Skirstiniy, priklausanciu eksponentinei klasei,
antros eilés asimptotika diskriminantinéje analizéje
K. Dudinskas

Straipsnyje nagrinéjamas skirstiniy, priklausantiy eksponentinei klasei, diskriminantinés analizés uZ-
davinys. Gautas klasifikavimo rizikos padidéjimo antros eilés asimptotinis skleidinys atvejui, kai naudo-
jame maksimalaus tikétinumo parametry jver¢ius pagal stratifikuotas mokymo imtis.



