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1. Introduction

The most common method of estimating a posteriori probabilities in classification is “plug-
in” principle when unknown parameters in calculation of a posteriori probabilities are replaced
by the maximum likelihood estimates (MLE). However, for comparatively small sample size
it is better to apply biased estimators in order to reduce the variance of the estimates. One of
these methods is to reduce dimension of observations by projecting them to a subspace of lower
dimension and to calculate MLE in the subspace.

Theoretical background of this problem is given, e.g., in [2] and [6]. We present computer
simulation results that show that for comparatively small sample size classification using pro-
Jection pursuit algorithm gives better accuracy of estimates of a posteriori probabilities and less
classification error. We are thankful to prof. R. Rudzkis who gave the idea and many constructive
and valuable remarks.

The introduction presents already known methods. Description of projection pursuit is gi-
ven in more generalized form that is needed for our purposes for reader’s convenience. Further
studies are on the way, which will help to make practical decision (probably using bootstrap
methods) in which situations use of projection pursuit is preferable (including computational
costs of finding discriminant subspace).

Main definitions. Let us have q independent d-dimensional Gaussian random variables Y; with
different distribution densities (-; M;, R)) gef i, where means M; and covariance matrices R,
i =1,2,...,q, are unknown. Let v be random variable (r.v.) independentof Y;, 1 = 1,...,q,
and taking on values 1, 2, .. ., g with unknown probabilitiesp; > 0,i = 1,2, ..., g, respectively.
In this paper we assume that number of classes g is known. We observe d-dimensional r.v.
X =Y, . Each observation belongs to one of g classes depending on r.v. v. Distribution density
of r.v. X is therefore a Gaussian mixture density

q
f@) = pipix) € f(z,6), zeRY, ()
i=1
where 8 = (p;, M;, Ri,i = 1,2,...,q) is an ﬁnknown multidimensional parameter. Probabili-

ties p; = P{v = i} are a priori probabilities for r.v. X to belong to the ith class.
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We will consider the general classification problem of estimating a posteriori probabilities
m(i,z) = P{v = i|X = z} from the sample {X1, X3,..., Xy} % XV of i.i.d. random
variables with distribution density (1). Under assumptions above

W(i,w)=ﬂa(i,m)=%%), i=1,2...,q, z€R< )

The problem is to estimate the unknown multidimensional parameter 6.

The EM algorithm. If number of classes q is known, then the maximum likelihood estimate 6*
is an efficient estimate of 6. The most common method for calculating the MLE for Gaussian
mixtures is so-called EM (Expectation Maximization) algorithm. Let 7V = {n(i, X), i =
1,2,...,9, X € XN} be any given a posteriori probabilities for sample data points X~ . For
given 7V, the parameter § = (pis My, Riyi = 1,2,...,q) is calculated using the following
equalities:

N
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pi = Nj:l 7r(%X]‘)? 1= 112) e qy (3a)
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1 ZN (i, X;)
Ri = Nj:l 1,71' ’ (Xj - Mi)(Xj - Mi)T, i=12...,q (e

For a given 6 probabilities 7 are calculated using formula (2). The EM algorithm is an ite-
rative procedure which starts either from a given parameter 6 or given probabilities 7V applying
in turn formulae (3) and (2). The EM algorithm usually ends after some predefined number
of iterations. Parameter 0 in the EM algorithm converges to MLE if starting parameter €° is
sufficiently close to 9*.

For mixture distributions the EM al gorithm was proposed independently by Schlesinger[11],
Hasselb]ad[7], and Behboodian[3]. On the convergence properties of the EM al gorithm see [13].
Also see, €.g., monographs [2], [4], (8], [12]. For further references see [2] and [9).

Discriminant space. Let V' = cov(X, X) be the covariance matrix of r.v. X. Define the scalar
Product of arbitrary vectors u, h € R as (u, h) = uTV~1h and denote by uy, the projection of
arbitrary vector u € R? to a linear subspace L ¢ R?. Discriminant space H is defined as a linear
Subspace H C R? with the property P{v = i| X = z}=P{v=ilXyg=z4},i=1,2,...,q,
T € R?, and the minimal dimension. It is known that for Gaussian mixture densities (1) with
€qual covariance matrices we have dimH < q.

Let k = dim H and vectors U1, U2, ..., U be a basis in the discriminant space H. Denote
U= (V-ly,V-iy,,.. ., V~lu)T. Then 7(i,z) = P{v = i|lUX = Uz},i = 1,2,...,q,
Z € R%. This means that projected sample {U X1,V X,,...,UXy} is a sufficient statistics for
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estimating the a posteriori probabilities. The distribution density of the r.v. UX is a Gaussian
mixture density

q
@) =Y pief(2) € 7 (2,61), zeRK, )
i=1

where off = (-, MH RH),i=1,2,... q,are k-dimensional Gaussian distribution densities
with means M¥ = UM, and covariance matrices RE = UTRU, 6y = (p;, MH RH i =
1,2,..., q) is the multidimensional parameter.

Projection pursuit algorithm. One of methods to find discriminant space is projection pursuit
algorithm. It is a step-by-step procedure to find the basic vectors of the discriminant space. Pro-
jection pursuit method was introduced by Friedman and Tukey [6]. Properties of the projection
pursuit method also have been studied well enough, see, e.g., [1] and [5]. See also Aivazyan et
al. [2]. Description below is based on [10].

Let F be the set of one-dimensional Gaussian mixture distribution functions, p =
p(G1,Gs), Gy, G4 € F,be some functional satisfying the following conditions: p(G;, G;) =0
and p(G1,G2) > 0, if G, # G,. For arbitrary non-zero u € R? define a projection index
Q(u) = p(F,, D), where F,, is the distribution function of the standardized r.v. uTX, ® is the
standard Gaussian distribution function.

Let orthonormal vectors uy, us, . .., ux be found step-by-step as follows: set Uy = {0},
for i = 1,2,...,d, calculate u; = argmax {Q(u), u € Uty ul = 1}, U; =
span {uy, ua, ..., u,}, and stop when Q(u;) = 0. We set k = min{i : Q(uit+1) = 0} (by
definition Q(ua41) = 0). Of course, in real calculations we use projection index estimate
Q(u) = @(u. XN) based on the sample X" and use stopping condition @(ui) < &;, where
€1,€2, ..., €4 is some sequence of small positive numbers satisfying certain conditions.

Assume that the covariance matrices of components of X are equal. If the functional p is
shift- and scale-invariant and p(G; * ®, G5 * ®) < p(G1, G3) for any Gaussian Gz and G, #
G2, Gy € F, then the vectors u;, U2, ..., ux form a basis of the discriminant space.

2. Computer simulation results

In this paper we present two typical examples (all performed tests are not covered by this paper)
of computer simulation results that demonstrate better accuracy of estimates of the a posteriori
probabilities and less classification errors when projection pursuit algorithm is used. We assume
that we have sufficiently good starting parameters for the EM algorithm — we start from parame-
ters that were used for simulation of the sample X . For projected sample we use corresponding
theoretical density (4). We also use theoretical basic vectors of the discriminant space. So pre-
sented results do not contain errors due to selection of starting parameters for the EM algorithm
and errors due to finding basic vectors of the discriminant space.

In all performed tests we have studied dimensions d in the range 5..10. We have tested the
projection pursuit algorithm based on generalized Q2 metrics for finding the basic vectors of the
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discriminant space. Dimension of the discriminant space was in the range 1..2. The sample size
N varied from 100 to 400 in order to achieve differences in estimation. Number of classes g was
in the range 2..5. Covariance matrices of all partial distribution densities were unit.

We studied accuracy of estimation of the a posteriori probabilities, number of Bayesian clas-
sification errors (i.e., classification using estimated parameters vs. classification using theoretical
parameters) and true classification errors (i.e., Bayesian classification using estimated or theo-
retical parameters vs. known true class numbers of the sample). Accuracy of estimation of the
a posteriori probabilities is measured as mean absolute distance I(7"V, mV) between the estima-
ted a posteriori probabilities 7V and the theoretical a posteriori probabilities 77V, i.e.,

q N
IGN, 7Ny = Niq SN 1RG, X5) - 76, X)) ®)

i=1 j=1

We compare distance [(7Y, 7V) and (7Y, 7V) where 7V are obtained from MLE in the initial
space and 7y are obtained from MLE in the discriminant subspace H. Number of Bayesian clas-
sification errors is measured as percentage of differences in Bayesian classification comparing
classification using known theoretical parameter versus classification using estimated parame-
ter. Recall, that Bayes rule of classification assigns an observation X € XV to the ith class if
i =arg maxg=1,2, 4 Pkpr(X).

In Example 1 we have 5-dimensional Gaussian mixture model with five clusters with means
(=2r,0,0,0, 0), (-r,0,0,0,0),(0,0,0,0,0), (r,0,0,0,0,0), (2, 0,0, 0,0). In Figs. 1-3 on =
axis we have parameter 7. In each case we simulated 100 realizations (sample size N = 300).
Example 1 shows that for moderate distance between clusters we can achieve significantly less
mean absolute error (5) and number of classification errors.

In Example 2 we have 5-dimensional Gaussian mixture model with three clusters with means
(-3,-4,0,0, 0), (0, 24,0,0,0), (3,a,0,0,0). In Figs. 46 on z axis we have parameter a. In
each case we simulated 100 realizations (sample size N = 300). In this example dim H = 2 (if
@ > 0). Projection to one-dimensional subspace therefore is not a projection to a discriminant
subspace, but for small values of parameter a we achieve less classification errors. For bigger
values of parameter a projection to the two-dimensional discriminant subspace gives signifi-
cantly less classification errors. Example 2 shows that in real calculations we must be aware of
selecting too small dimension of the discriminant subspace.

Performed tests show that the projection to the discriminant subspace is definitely recommen-
ded if possible. The advantages do not depend much on the sample size. Note that for Gaussian
Mixture models presented in the examples finding the discriminant subspace is quite simple. In
general, finding the discriminant subspace in the higher dimensions is a very time consuming
Procedure and can significantly reduce advantages of using projection pursuit.
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Fig. 1. Mean absolute error
(average of 100 realizations)
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Fig. 4. Mean absolute error
(average of 100 realizations)
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Fig. 2. Number of classification
errors (avg. of 100 realizations)
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Fig. 5. Number of classification
errors (avg. of 100 realizations)
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Fig. 3. True classification errors
(average of 100 realizations)
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Fig. 6. True classification errors
(average of 100 realizations)
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Projektavimo taikymo tikslingumas klasifikavime
G. Jakimauskas, R. Kriktolaitis

Nagrinétas tikslinio projektavimo algoritmo taikymo tikslingumas vertinant aposteriorines tikimybes i§

imties, kai stebimas atsitiktinis dydis tenkina daugiamatio Gauso misinio modeli. Pateikiami kompiuterinio
modeliavimo rezultatai.



