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1. General remarks

The term ’adaptivity’ has two different meanings even in mathematical statistics. For parametric
and semiparametric statistical models with nuisance parameters, adaptivity of an estimator me-
ans that it is as efficient as the optimal estimator with a priori known true values of the nuisance
parameters (see, e.g., Bickel (1982)). In this paper we shall discuss the adaptivity in the other
(broader) sense (to some extent related to the previous meaning), namely, the adaptivity in non-
parametric estimation of functions. In the widest sense the adaptive (statistical) estimators can
be thought of as statistical procedures that perform a data-driven selection of the *best’ estimator
among estimators known to be *optimal’ for some statistical model from a given class of models.
Thus, adaptivity is closely related to the model selection problem, robust and distribution-free
estimation. For original interpretation and comprehesive discussion of this subject we recom-
mend the paper by Barron et al. (1999).

A classical nonparametric estimation problem is that of estimating probability density (p.d.).
Let XN = (X),...,Xn)bea sample of i.i.d. random variables having a p.d. flz),z e K C
R, with respect to some o-finite measure u. The problem is to find a *good’ estimator of f
based on the sample XV and prior information that f € W. It is the nonparametric estimation
problem we will use to illustrate main ideas of adaptive estimation in what follows. However, it
should be emphasized that this problem, along with estimating regression function, spectral den-
sity of stationary sequence (process), si gnal observed in white Gaussian noise (so-called white
noise model), ect., is a special case of general problem of estimating some unknown function
(treated as infinite-dimensional parameter). The inspection of the existing literature on the topic
shows that an idea or a method proposed in one of these areas sooner or later is realized in others
as well. Recent advances enables one to formulate this statement in a precise form by means of
Le Cam’s deficiency pseudodistance A (see Le Cam (1986), Le Cam and Yang (1990)). Two
statistical models are said to be asymptotically equivalent iff the pseudodistance A between
them tends to zero together with some asymptotic parameter. Such asymptotic equivalence to
the Gaussian white noise model is established for Gaussian regression (Brown and Low (1996)).
p.d. (Nussbaum (1996)), and non-Gaussian regression (Grama and Nussbaum (1998)). The equi-
valence means that the two models are (asymptotically) equivalent for all purposes of statistical
decisions with bounded loss functions. It should be emphasized, however, that this equivalence,
as pointed out by Efromovich and Samarov (Efromovich and Samarov (1996)), has its limits. It
holds only for classes of sufficiently smooth functions and, with exception of Gaussian regres-
sion, is nonconstructive (see Nussbaum ( 1996)).
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Anyway, this provides some grounding to look at the nonparametric estimation problem of
functions from a general standpoint without separating any special problem, say, p.d. estimation,
from the others.

2. Two approaches

Let q(f, g) be some pseudodistance between two functions f and g (or loss function) and let
6n(f, f) denote the risk (i.e. expected losses) of an estimator f = f(X") based on observations
XN N = 0o

n(f, f) =Egolf, f).

For a given set of functions W and a given class of estimators F, define the minimax risk

6n(F,W) = inf sup én(f, f)
fEF few

with the natural conventions Sy (F, f) = 6n(F, {f}) and én(F, W) = 6N({f},f). We set
on(W) = 6n(F, W) if the F is the set of all estimators of f based on XN,
There are two approaches to the nonparametric estimation problem.

2.1. Target function approach.

According to this approach a class F = {f3, 8 € B} of estimators of f € W is given, where 3
is some (tuning) parameter. For example:

(1) for projection estimators (Cencov (1962, 1982)), B is the dimension of a projection space,
for orthogonal series estimators 3, is a sequence of weights (Hall (1987)),

(2) for kernel estimators, 3 is a bandwidth (smoothing parameter) (Stone (1984)),

(3) for spline estimators, 3 can be a number of knots, a set of knots, penalization or regula-
rization parameters (Wahba (1990)), ect.

The task is to choose 3 so as to minimize the risk &( fp, f) (or some its approximation or
estimate). Clearly, the optimal value 3* == B*(f) of the tuning parameter 3 depends on the
unknown function f, usually through some smoothness characteristics of f. Thus, the problem
is to find a data-driven value B of B such that the ratio

o 6n(fanf)
r(8) = lll{,nj;p WED few,

Wwould be as small as possible. This is called adaptivity to the target function (see Barron et al.
(1999y).

This approach, based on the prespecified class of estimators F, gives no way to compare
different estimating techniques (simulation beeing an evident exception) and to evaluate the loss
in adaptivity (efficiency) due to the restriction of estimating procedures to F instead of the set
of all estimators.
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2.2. Minimax approach.
This approach is based on the notion of the minimax risk (efficiency).

Definition 1. An estimator fw is called (asymptotically) minimax (efficient) on W iff
SN (fw, W) ~ Sn(W).

Again, a minimax estimator fw, if it exists and can be found, depends on the set W (may
be through some simple its smoothness characteristics). Thus, we have a family of estimators
{ fw, W € W} parametrized by W where W is some class (scale) of sets of (smooth) functions.
Since W is frequently a priori unknown, we have the situation very similar to that in the first
(target function) approach. However, the difference does exist: now we deal with the class of
(asymtotically) optimal estimators. The estimators which are independent of W and share some
minimaxity properties (see below) are called minimax adaptive.

3. Minimax estimation

Let

: : 6n(f, W)
R
If A(f, W) < oo the estimator f is called rate minimax (variants: minimax in rate, near mini-
max).

Apparently, Chencov (1962, 1982) was the first who established a lower bound (nonasympto-
tic!) for the minimax risk §(W) with Ly-losses. Under some (geometric) conditions on W € Ly
he proved that

5n(W) > ~(N)/N VN,

where v(N) = v(N,W) — oo. He also introduced projection estimators and showed their
rate minimaxity (for a properly chosen projection space). Rate minimax estimators are found
for a wide class of losses (including L, losses, 1 < P < oo) for ellipsoids and hyper-
rectangulars in Lo, large scale of subsets in Sobolev, Holder, Besov spaces (see Ibragimov
and Khas'minskii (1981), Brentagnole and Huber (1979), Stone (1982), Bentkus and Kazba-
ras (1981), Bentkus (1985), Donoho (1990), Kerkyacharian and Picard (1993), and references
therein).

3.1. Minimax efficiency.

Up to now there are only three special cases where minimax estimators are known.

1. The case of L. In the pioneering paper Pinsker (1980) proposed the minimax estimator for
the squared L, distance and W being an ellipsoid in Ly. This result was extended to other non-
parametric models: distribution and spectral densities (Efroimovich and Pinsker (1981, 1982))
and regression (Nussbaum (1985), Golubev and Nussbaum (1990), Efromovich (1996)). Tsyba-
kov (1997) has shown that the result holds also for non-squared losses, o(f, g) = w(||f — gll2)
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and can also be applied when estimating derivatives. Rudzkis and Radavitius (1993) built up
minimax estimators for sets W C Lo defined via accuracy of their approximation by the finite-
dimensional linear subspaces in L, generated by a given orthobasis. This approach was proposed
by Cencov (1962, 1982).

2. Sup-norm in Hélder classes. Korostelev (1993) found the minimax estimators for Hélder
classes with Lo, risk (see also Donoho (1994)).

3. Analytical functions. In the case where W is a certain class of analytical functions, the
minimax estimators for general Ly, risk are proposed in (Golubev et al. (1996), the case p = 0o)
and in (Guerre and Tsybakov (1998), the case 1 < p < 00). '

3.2. Locally minimax estimation.

It worth noting that the notion of the minimax efficiency of nonparametric estimators under con-
sideration differs from the classical (asymptotic) minimax efficiency in the parametric situation
(see, e.g., Ibragimov and Khas’miskii ( 1981)). The key point is that, in the first case, the su-
premum is taken over the whole set W, whereas in the latter case the supremum is taken over
WgN y g € interior(W), where WgN is a contracting (N — o0) neighborhood of g. Let W° be
some (everywhere dense) subset of W.

Definition 2. An estimator f is called locally minimax iff
SN(f,WY) ~on(WD)  Vgewe

Asymptotic lower bounds for the locally minimax risk with quadratic losses were establis-
hed by Golubev (1991) who exploited a condition of nonparametric local asymptotic normality.
He also proposed locally minimax estimators (and adaptive!, see below) for distribution and
Spectral densities (see Golubev (1992, 1993)). However, Golubev’s estimators are attached to
the trigonometric basis and are not minimax if the nonparametric estimation problem is actually
Parametric (even this fact is known a priori).

Another approach to the locally minimax efficiency is proposed in Rudzkis and Radavigius
(1993). 1t applies to any differentiable orthobasis and enables one to treat both nonparametric
and parametric problems in a unified way. In some special cases (for example, fitting p.d. by
orthogonal polynomials) the construction of the locally minimax estimator can be considerably
simplified (Radaviius (1995)). For general asymptotic lower bound of the locally minimax risk,
see (Radavi€ius (1997)).

4. Adaptive estimation

4.1. Adaptive estimation of target function.

If T(B » f) = 1 (see Subsection 2.1), the estimator is called adaptive. However, more common is
the situation where (3, f) < 0o Vf € W. Such an estimate it is natural to call rate adaptive,
but usually the same term is retained. The widely used methods for selection of B are plug-in,
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cross-validation, generalized cross-validation and bootstrap (see, for instance, Wahba (1990),
Hirdle (1990), Davison and Hinkley (1997), Franke and Hirdle (1992)). For adaptive kernel
estimators, we refer, e.g., to Hall (1983), Stone (1984) and Kazbaras (1986), for projection
(orthogonal series) estimators, we cite Rudzkis (1985), Kazbaras (1987), Hall (1987) among
others.

Since the smoothness of the function f is frequently subject to significant variations through
K, definition region of f (as, for instance, in the case of mixture of distributions or piecewise
constant regression), it is natural to assume that 3 depends on the location z € K. Thus, taking
B = B(x), we come to the notion of locally (or pointwise) adaptive estimation, which have
attracted the considerable interest among statistitians in the last two decades. See Cheng (1997),
Brockman et al. (1993), Hirdle and Marron (1985), View (1991) among others, for kernel met-
hods, and Luo and Wahba (1997), Mammen and van de Geer (1997), and references therein, for
spline estimation.

4.2. Minimax adaptive estimation.

Let W = {W(b),b € B} be some scale of sets (in L,, Holder, Sobolev or Besov spaces)
indexed by a parameter b which characterizes (in some sense) the smoothness of W (b). The
set of estimators which are independent of b (but possibly dependent on W) is denoted by F,.
Definition 3. An estimator f € Fq is called

(a) minimax adaptive if

A\ def ;. 6N(.fa W(b))
a = limsup sup ———+ =1;
SU G 0y
(b) optimal rate (minimax) adaptive if a(f) < co;
(c) (asymptotically) exact (minimax) adaptive (Tsybakov (1998)) if the rate is optimal among
all optimal rate adaptive estimators, i.e.,

A, -

a(f) = a(¥a) = inf a(f);

feFa

(d) near (minimax) adaptive (up to a factor L(N)) if the convergence rate of the adaptive
estimator is within the factor L(N) to the minimax rate, i.e.,

SWEWE) _ o
b onw) - OE

here L(N) is a slowly varying function, usually a power of logarithm.

Minimax adaptive estimators are known only in the case of estimation in Ly (Case 1 in
Subsection 3.1). See, for instance, Rudzkis (1985), Efroimovich (1985, 1996), Kazbaras (1986,
1987), Efroimovich and Pinsker (1986), Golubev (1990, 1992, 1993).

For Lo, risk (case 2) minimax adaptive estimators, in general, do not exist (see, e.g., Tsyba-
kov (1998)). For optimal rate adaptive and near adaptive estimation, we refer to Lepskii (1991).
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Golubev and Nussbaum (1992), Donoho and Johnstone (1995), Donoho et al. (1995) among
others. Exact adaptive estimation is studied by Tsybakov (1998).

Locally (pointwise) adaptive minimax estimation.

Achievements in locally adaptive estimation inspired investigations of locally (pointwise) adap-
tive estimating procedures from the minimax point of view. There are known (at the present
moment) two methods allowing one to attack the problem.

The first method is to describe the local smoothness in terms of balls of Besov spaces and
then to build up an estimator by making use of a wavelet basis which is known to have nice
approximation properties in Besov spaces (see Donoho and Johnstone (1994, 1995), Donoho et
al. (1995, 1996) among others). The local adaptivity is achieved simply through thresholding of
the empirical wavelet coefficients.

The second method, exploiting kernel estimators, is based on Lepskii’s pointwise minimax
results (Lepskii (1990-1992)) and is developed in (Lepskii and Spokoiny (1995, 1997), Lepskii
etal. (1997)). Note that for the minimax poitwise risk the situation is quite different from that for
global losses. As shown by Lepskii (1990) in this case there is no optimal rate adaptive estimator
on the scale of Holder classes: a logarithmic factor is a necessary payment for adaptation. The
reason is that the pointwise losses are not asymptotically degenerate.
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Adaptyvus vertinimas: trumpa apZvalga
M. Radavigius

Pateikta trumpa funkciju adaptyvaus neparametrinio vertinimo apZvalga. Iliustracijai paimtas neZi-
nomo tikimybinio tankio neparametrinio vertinimo uZdavinys.



