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1. Introduction

Suppose 2, (2, are two mutually exclusive and exhaustive classes of objects. Let X be a p-
dimensional feature vector, which is measured on each object. For objects randomly chosen
from §2;, X follows the multivariate distribution with density function p; (z; ;) = p; (z), which
belongs to the parametric family of regular densities F; = {p; (z; 6),6,€©, CR"},1=1,2.
Discriminant analysis deals with the problem of identifying the class of object for which X is
measured. For a zero-one loss function, the Bayes classification rule (BCR) dj (z), minimizing
the probability of misclassification, is equivalent to assigning X = z to ; if

mp (x) = l?'_‘%”kpk (z),

Wwhere 7, is a prior probability of §;.
Then, BCR dp () is

dp (z) = arg max mipx (z) .

Let Pg denote the probability of misclassification for BCR dgp (z) or the Bayes error rate
(see, e.g., Hand (1997)).

In practical applications, the density functions {p; ()} are seldom completely known. Often
they are known only up to the parameters {61}, i.e. we may only assert that p; (x) is an element of
4 parametric family of density functions F;. Under these conditions, it is customary to estimate
01 from a training sample T; = {X;, vy Xin, } drawn from Q;, for i = 1,2. Pt T = T U Ty,
N= N1y + N,. .

Let 6 be the maximum likelihood estimator (MLE) of 6 based on T; (! = 1, 2).

An estimator of the rule dp (z) is called a plug-in rule dg (z, 51, 52) and is defined by

dB (.’E, 51, 52) = arg lgl’_l{i.)g TkPk (:L‘, §k>
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The actual error rate (P4) of dp (z, 6, 52) is the probability of misclassifying a randomly
and independently of T selected object with feature X and is designated by

Py= i’”/ (1 —5 (l,dB (x,§1,§2)))p, (z)dz,
=1

where 6 (-, -) is the Kronecker’s delta.

DEFINITION. Expected error regret (EER) for dg ( . 51, 52) is the expectation of the difference

between P4 and Pp with respect to the distribution of 51, 52, ie.,
EER = E(Py) —

The purpose of this article is to find the asymptotic expansion for EER. The case of training
sample of independent normaly distributed observations from one of two classes with L =5
I = 1,2, was considered in (Okamoto (1963)). Ducinskas (1997) has been made the generaliza-
tion for the case of arbitrary number of classes (I > 2) and regular class-conditional densities.

2. The main result

Suppose that any point 7 = (r1,73) € D C R? can be assigned to one of two classes 1.
§2; prescribed above, with positive prior probabilities 7}, 7o, respectively. Here we identify the
objects with points in D. The class of the point r is given by the random 2-dimensional vector
Y,Y = (Yir, Ya,) of zero-one variables. The lth component of Y is defined to be one or zero
according as an class of pointr isornot €; (I = 1,2). Then Y, ~ ~ Multy(1; (my, 72)).

Suppose that X, means the observation of X at point r € D. A decision is to be made as to
which class the randomly chosen point 7 € D is assigned on the basis of observed value of Xr-

Let

2
Xy = Zylrﬂl +€r, 1)

=1

where 1), u2 € RP, jiy # p2 and the noise e, = (€, ..., €?) are the observation of the zero-mean
second-order stationary correlated random field at location r € D.

The essential assumption is that {¢,} is Gaussian field with spatially factorized covariance.
Hence, the common class-conditional covariance between any two observations X, and X at
points7, s € D belonging to €; can be factorized as cov (X, X,/r,s € Q) = p LR)Z, (r # 3),
where p'(-) is the spatial correlation function (l=1,2),andh =7 -5, = cov (¢, €).

Also here we assume that the effect of cross-correlation between samples from different
classes is negl:gtble In this paper we suppose, that it is equal to zero, i. e., cov (X, Xs/7 €
Q], LS Qz)
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Let D; = {s}, ..., sly,} C D be the set of points belonging to class €, { = 1,2. Then X,;
means the observation of X at the point sg, ie Xi; =X (sg-), i=1,.,N,l=1,2

/
Then, the expectation for N;p x 1 stacked vector T} = (X ,/1, v X, l/M> is

#?- = 1N1 ® (l = 1)2)7 (2)

where 1, is the N;-dimensional vector of ones, and Q is the Kronecker product. The covariance
matrix of T,V is

SF=CeT, 3)

where C is the spatial correlation matrix of order N; x N;, whose (i j)th element is p (st —sh)
(G,j=1,..., N).

Suppose that ¥ and C; are known and y; are unknown (I = 1, 2). In this paper maximum
likelihood estimators (MLE) 7; of 4; based on T} are used. Let Cil= (cfj )

Lemma. MLE of {} (1 =1,2)is
Ry
= —.-.Zci’-nj,

g N; 1J e N, 17
Where ¢’ = 2is1¢’ and ¢ = Zi,j=l ¢ -

Proof. The log-likelihood of 7; is
InL; = —const — 312- (N:In|X| + pIn|C])
1
-3 (c"t'r (E‘ISI) +c'tr (E_l (1 —Z0) (- Tt)/)) )

- N g N i = -
Wwhere 7, = E!,‘ 2 =161 and §) = le‘ Yij=1¢7 (zy —T) (2 — 7).

By solving equation %‘1 = 0, we complete the proof of Lemma.

MLE under spatial sampling of Gaussian random fields was studied by Mardia and Marshall
(1984). They gave the regularity conditions which ensure consistency and asymptotic normality
of parameter estimators. We assume that these conditions hold.

Sety = InZl Ay = i —u (0= 1,2) and let A2 = (u; — ) £ (uy — pp) be
the Mahalanobis distance. Let & (-) and ¢ (-) denote standard normal distribution and density
functions, respectively.

The plug-in discriminant function can be written in the form

/
~ o~ 1 . . ~ o~
o o) = (2= 3 (B + 7)) = Ba). @
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Note that (see McLaclan (1974))

Py = md _(m -%(#14-#2))/(/71—!72)4'7)
V(@ - 2) = (@ - )
O P 1) e R

V(i — ) 2@ - f)

For simplicity, assume p = 1.
Approximation of E (P,) proposed by Malinovskyi (1979) is

~1A
\/ 1+152 p/CD; - D{Co,

Enr (Py) = m®

U
+mod Z s
V1+ 152, D/aD, - DiCe,

where Dz/ = (di, ..., din,) With d[J = ,,.j =1,..., N, and Cy,; is N; x 1-dimensional vector

of correlations p (sh — j), here s} dcnotes the location of point to be classified.

Theorem. If ¢y — 0 (I =1,2), then the first-order asymptotic expansion of EER for
dp (x, i1, fi2), using MLE [iy, fi, is

EER = Z—W (—— + (1)} ) (—% + (1) %)2/13

<

1
o\ ——F—= ®
min (cj, ¢5)
Proof. Since P, is invariant under linear transformations of data we use the convenient canoni-
cal fomofoc =1and ) = —puy = %A (see Dunn (1971)). Expand P, in Taylor series about

the point 12; = y; and then average with respect to the distribution of ; (I = 1, 2). Expansion
for E (P,4) dropping the third order terms is as follows

2 2
1 I
E(P+)=Pg+Y PVE(Af) + 3t (Pz k A“'A‘“‘)) ’ ©

=1 Lk=1

where Pl(l) is the vector of the first-order derivatives of P4 with respect to 7i; evaluated at ju
(! =1, 2). Similarly, P,(i) denotes the matrix of the second-order derivatives of P4 with respect
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to 71; and [ix. evaluated at y; and 1, respectively (I, k = 1, 2). In considered situation there was
obtained (see Ganesalingam S. and McLaclan G.J. (1978)) that

- A_o AL
PB_ﬂl(I)(_E—Z)+7r2®(—2 +A>

From Lemma and the assumptions stated above we have

E(Af) = E(ALAT) =0, (7)
~v2) _ 1
E((am)?) = —. (®)

l

Then, using (7), (8) in (6) we complete the proof of the theorem.

COROLLARY. Whether 7} consists of statistically independent X;;, j = 1, ..., N, then ¢ =N
in formula (5).

The corollary holds, since C;™! = I for statistically independent X ,j=1,...,N.
The result of the proved theorem can be used in obtaining the optimal sampling design that
ensures the minimum of asymptotic EER for fixed training sample size N.

3. Example

We consider an integer regular lattice and use the second-order nei ghborhood scheme for trai-
ning sample. Suppose that there are 4 spatially symmetric observations in training sample for
each class.

Two spatial correlation functions are considered:

L gt = exp (—-a\/t2h1§ + h%) - Exponential correlation function (I = 1, 2);

Fig. 1. Second-order neighborhood scheme with symmetric training samples.
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Table 1

Exponential correlation function with o = 0.1and t2 = 0.5

A P AEER AEERM 4437  1EBRy

025 04503  0.0058 0.0453 0.1291 0.0625
075 03538 0.0165 0.1329 0.1241 0.0603
1.25  0.2659  0.0242 0.2119 0.1145 0.0559
1.75 0.1908  0.0281 0.2782 0.1012 0.0499
225 0.1303  0.0282 0.3299 0.,0854 0.0428
275 0.0846  0.0252 0.3668 0.0687 0.0351

Table 2
Omstein—Uhlenbeck correlation function witha = 8 = 0.1

A Pp AEER AFEERy 735%%% INDEA}:

025 0.4503  0.0056 0.0447 0.1261 0.0634
0.75 03538  0.0159 0.1309 0.1212 0.0611
1.25 0.2659  0.0233 0.2086 0.1118 0.0568
1.75 0.1908  0.0271 0.2737 0.0989 0.0508
225 0.1303  0.0271 0.3241 0.0837 0.0436
275 0.0846  0.0242 0.3598 0.0674 00357

2. ph = exp (—ah} — Bh2) - Ornstein-Uhlenbeck correlation function (see, e.g., Ying Z.
(1993) (I = 1,2).
Note that p} and p} are anisotropic correlation functions, when t2 5 1 and o # £, respecti-
vely. Let

AEERAi lvn,o( T 4 1)1A)< LA 1)’A)2/A
— 4c A 2 A 2

and
AEER) £ Ep (Py) — Ppg.

In Tables 1 and 2 values of AEER and AEER s with m; = my = 0.5 for considered twO
correlation functions are presented. Also ratios ATE;;%%‘ and %AE’—B%—S are calculated (the ratio
LNPEL = 0.2643 (for p}) and L¥DEP = 0.2747 (for pb) for all A), here INDEP means an
approximation of the EE'R in the case of independent observations in neighbouring locations-

Figures in Tables 1 and 2 allow us to conclude that approximation of E'E R based on asymp-

totic expansion presented in this paper has smaller values than the approximation proposed by
Malinovskyi for all considered cases. '
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Plokstumos tasky klasifikavimas pagal Gauso lauky realizaci jas
J. Saltyte, K. Duginskas

Straipsnyje nagrin¢jamas plokStumos tasky klasifikavimo uZdavinys pagal Gauso lauky realizacijas.
Gau‘tas pirmos eilés asimptotinis klasifikavimo rizikos padidéjimo skleidinys atvejui, kai i Bajeso klasifi-
kavimo taisykle istatome maksimalaus tikétinumo iverCius. Atliktas skaitinis gauto skleidinio palyginimas

su Malinovskio aproksimacija situacijai, kai stebime ir klasifikuojame tik taSkus, esan&ius statiakampéje
gardeléje.



