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A functional limit theorem for random mappings

E. Manstavicius* (VU)

1. Introduction

Let Ty be the set of all mappings ¢ from the set {1, . .., N} into itself and vn(...) bethe
uniform probability measure on Ty. We are interested in structural properties of a random
@ which can be described in terms of its functional graph G, e.g., a labelled directed
graph on N vertices. We recall that an edge from i to J exists in the graph G, if and
only if (i) = j. Suppose that G, has the component structure k = (k1, ..., kn), where
ki = k;(p) denotes the number of connected components of size j, lk;+---+ Nky = N.
Denote w(p) = k| +- - - ky the number of connected components in a mapping ¢ defined
as that for the graph G,. Let further the limits are taken as N — oo.

In 1969 V. E. Stepanov [8] proved the central limit theorem for w(e). V. E Kolchin [6]
determined, for fixed m, the limiting distribution of the size of the m-th largest connected
component. D. Aldous [1] improved this result by proving a global limit theorem for the
component structure of a random mapping. He showed that the ordered sequence of sizes
of components can be described by the Poisson—Dirichlet distribution with the parameter
1/2 on the set {(xy, x5, .. Dt X1,%2,...20,x;+x+--- = 1}. J.C.Hansen [5] considered
the number Vy (¢, t) of connected components in G, of size less than or equal to N’,
where 0 <t < 1. To present her result, we set

Wy :=Wn(p,t) = (Vn(p,t) — (t/2)/10g N)//(1/2) log N.

For a fixed ¢ € Ty, the function Wy(p, .) is an element of D[0, 1], the space of right-
continuous functions with left limits on [0,1]. Let D be the Borel o-field of subsets
of D[0, 1] with respect to the uniform topology, and vy - Wy ' be the distribution of the
Process Wy. Denote by W the Wiener measure.

THEOREM A [5]. The measures VN ¢ W;l weakly converge to W.

We will generalize this theorem by establishing an invariance principle for additive
Junctions (decomposable statistics) defined on the set Tn. By definition such a function
h: Ty — R has the decomposition

N
h(@) =) hj(k;(p)) )
j=1

_
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for each ¢ € Ty, where hj(k), j > 1, k > 1, is some double sequence in R such that
hj(0) =0, j > 1. If hj(k) = khj(1) forall 1 < j < N and k > 0, then A is called a
completely additive function (linear statistics).

It follows from [6] that, for a fixed j, k;(¢) asymptotically behaves like the Poisson
random variable (r.v.) & with parameter

e—j j—1 js
A = - -
J j JZ=(:, s!
as j — oo. Since
A —1/@HI <87, j=1 )

(see [5]), it is natural to use the following normalizing sequences

1 N

a(j) 2 1 & a(j)?
—2, BXN)=- ,
=1 J 2jz=:l J

where a(j) := hj(1). Let

1
Hy = Hy(p, 1) = B—(ﬁs(jg(t)hj(kj((o)) - A(y(t))),

where
y(t) := yn(t) = max{u: B2(u) <tB*(N)} tel[0,1].
In the present remark we prove the following theorem.

THEOREM. Let B(N) — o0. The measures vy - H ;' weakly converge to W if and only

if

_ 1 Yoa()?
A ) = g ,Z‘ = o(1) A3)
la(j)I=eB(N)

for each € > 0.

This result is analoguous to the functional limit theorem for additive functions on
permutations established in our paper [4] written jointly with Gutti J.Babu. In this
investigation, for a probability measure on the symmetric group, we have used the Ewens
sampling formula which, if the parameter equals 1/2, is close to the distribution of
component vector of a random mapping from Ty (see [3] for the details). Thus some
similarity with the paper [4] is unavoidable, and, by this reason, our proof is fairly sketchy.
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2. Proof of Theorem

Sufficiency. As in [4], the problem can be reduced to that for completely additive
functions. Let &;, be the independent Poisson r.vs with parameters A;j, 1 < j < N, given
on some probability space {Q2, F, P}. Set a A b = min{a, b},

1
Xn(@) = —— a(j)§j —A(y(@®) ),
B(N)

J=y@®

rey— L Nl
Xy =2 > (jsy(Z‘Wams, A(y() A r)),

and

1
Hy := Hy(p,1) = E(N_)( Y aliki(@) — AK@) Ar)), I<r=n.

J=yAr
Let || - || denote the total variation distance on the set of probability measures on D.
LEMMA 1. We have
llvw - (HR)™' = P - (X3l = 0(1)

Jor an arbitrary sequence r = r(N) — 00, r = o(N). Moreover, if
B(N) — B(r) = o(B(N)) 4)

for some sequence r =r(N) — 00, then
P(e) := P( sup |Xn(r) — Xy (1)| > s) =o(1)
O<t<1
and
v (€) = vN( sup |Hn(p,t) — Hy(p,t)| > 8) =o(1)

O<t<l1
Jor each ¢ > (.
Proof. The first assertion is a corollary of Theorem 10 in [2] or Theorem 1.3 in [71.

The estimate for the processes defined in terms of independent r.vs follows from Levy’s
Inequality. Further we can use the inequality

vn(€) L (P(e/3) + N7hHe,

With arbitray 0 < ¢ < | /2, following from Lemma A of the paper [4]. Lemma 1 is proved.
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We now proceed with the following remark. Traditionally, in the partial sum processes
the time parameter ¢ is involved through the variances of the summands. So, in the
definition of Xy (¢), we should have used

y(t) := max Iu: ija(j)2 <u ija(j)zl

jzu j=N

instead of y(r). By (2) this change corresponds to the shift of ¢ by the factor 1 + o(1)
with the uniform in ¢ error estimate. Since the processes Xy (¢) and Xy (#(1 +0(1))) can
converge only simultaneously, we may use 1 /2j instead of A;. Similarly, one can observe
that the Lindeberg condition for the . vs a(j)§; is equivalent to (3). It implies (4) and also
gives weak convergence of Xy to the standard Brownian motion. Further an application
of Lemma 1 completes the proof of sufficiency.

Necessity. We need a result on the mean value My(f) of a completely multiplicative
function f: Ty — C. By definition, similarly to (1), such a function has the decomposition

N
HOES N L0k
j=1
for each ¢ € Ty, where b(j), j = 1, is some sequence in C.

LEMMA 2. Let f: Ty — C be a completely multiplicative function defined by b(j) =1
for all but j € J C (N/2, N). Then

e~ N=D(N — jN-J
N =N

NleN
=3 kG) - DA

My(f)=1+
N jel

Moreover, if |b(j)| < 1and J C ((1 — 8)N, N with sufficiently small § > 0, then
IMn(f)l > c(8) >0 (5)

provided N is. sufficiently large, N > N (8).

Proof. Grouping the mappings of Ty into the classes with a fortiori prescribed
component structure k = (k1, ..., kn), 1ky + -+-+ Nky = N, we obtain

1 NteV 5 (b()HAYY
My(f)=wx 2 f@ =77 }:ﬂ] ——k-J—'f——
k J=

¢veTy
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Note that, if k; > 1 for some j € J, then kj = 1 and k; = O for the remaining / # j and
I € J. Hence

NeV Ny , Nk
Mu(f) = NN( )3 ﬂﬁ+2bm21‘[k—!)
E =1 el & I=1"
k=0vleJ kj=1
NleV ) N Xf’
=1+—y Z(b(J)-l)EnF
jel & =1 M
4= ©
, NtV N oAb
_—.1+Z(b(1)—1)(1— N‘; ]'[k—")
jel k‘;;_01=1 1
5
. NleV
=1+Z(b(1)—l)(l-— ¥ dj(N)),
JjedJ
where
N A:q
dj(N)=Zl—[m.
ik I=1 .

From the identities

Zd(N)ZN _ ]_[ ellzl _ e—Ajzj(l + Z NNe_NZN)
J - - N!
I>1,1#j '

N20

we have

A}f e NNe—N (N - j)N-ie=(N=j)
k' nt T N! J (N = j)!

dj(N) = Z (-1
k,n>0
jk+n=N
provid.ed J € J. Inserting this into (6), we obtain the first assertion of Lemma 2.
Using (2) and the inequalities

V2an" V2" < n) < 2 2xn™ 1 2e", p > 1

from the expression of My (f) we get its lower estimate. Lemma 2 is proved.

. We now return to the processes. If vy - Hy' = W, then for each 0 < ¢ < 1, the
dl§tnbution of the difference Hy(p, 1) — Hy(p, ) converges weakly to the normal law
With zero mean and variance 1 —r. Let ¢n(u,t), u € R, denote the characteristic function
of Hy(p, 1) — Hy(p, t). Define b(j) = exp{iua(j)/B(N)}if y(t) < j < N and b(j) = 1
ELS:Where. For the completely multiplicative function f defined via fi(1) = b(j), we

e

lon (@, )| = M (f)] < e™*720-D 4 o(1) 7
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foru € Rand 0 <t < 1. For ¢ close to 1, we will apply Lemma 2. Let § be
sufficiently small and Ty = sup{r: y(r) < (1 — §)N}. Observe that Ty — 1. Indeed, if
TN = tp < 1} < 1 for some subsequence N := N’ — oo, then y(t;) > (1 — §)N for N
sufficiently large. Estimate (5) now yields |¢y(u, t;)| > c(8) > 0 uniformly in u € R,
contradicting to (7). Thus from the definitions of y(¢) and the sequence ty, it follows that

B2 (y(tn) +1) - B%((1-8))N + 1) <l
BX(N) ~ B2(N) =

l1+o(l) <ty <

Hence B(uN) ~ B(N) for each u € [(1 — (§/2))N, N] and some § > 0. Substituting
(1 — (8/2))N for N repeatedly, we deduce the existence of r = r(N) — oo such that
r = o(N) and B(r) ~ B(N). Now repeating the arguments of the proof of the sufficiency
part we obtain that vy (lev (0,1) < x) converge to the standard normal law. This together
with Lemma 1 leads to convergence of P(Xx(1) < x) to the same law. Since &;/B(N),
J < N, form an infinitesimal array of random variables, and since B(N) — oo, the
necessity of (3) follows from the Lindeberg—Feller theorem. This completes the proof of
Theorem 1.

REFERENCES

(11 A. Aldous, Exchangeability and Related Topics, Lecture Notes in Math., 1117, 1985, Springer, Berlin.

[2] R. Arratia and S. Tavaré, Limit theorems for combinatorial structures via discrete process approximations,
Random Structures and Algorithms, 3(3) (1992), 321-345.

[3]1 R. Arratia, D. Stark, and S. Tavaré, Total variation asymptotics for Poisson process approximations of
logarithmic combinatorial assemblies, Ann. of Probab., 23(3) (1995), 1347-1388.

[4] G. ). Babu and E. Manstavitius, Brownian motion and random permutations, Ann. of Applied Probab.,
(submitted) 1998, 15 p.).

[5] J. C. Hansen, A functional central limit theorem for random mappings, Ann. of Probab., 17(1) (1989),
317-332.

[6] V.F. Kolchin, A problem of the allocation of particles in cells and random mappings, Theory of Probab.
Appl., 21 (1976), 48-63.

[71 D. Stark, Explicit limits of total variation distance in approximations of random logarithmic assemblies
by related Poisson process, Combinatorics, Probab., and Computing, 6 (1997), 87-105.

[8] V. E. Stepanov, Limit distributions for certain characteristics of random mappings, Theory of Probab.
Appl., 14 (1969), 612-626.

Atsitiktiniy atvaizdZiy funkciné ribiné teorema

E. Manstavicius (VU)

Naudojant adityviasias funkcijas, apibréZtas baigtiniy aibiy atvaizdZiy aibéje, modeliuojamas Brown’o
judesys. Rastos biitinosios ir pakankamosios salygos, kada atitinkama tikimybiniy maty seka silpnai
konverguoja | Wiener’'io mata.



