A functional limit theorem for random mappings

E. Manstavičius* (VU)

1. Introduction

Let T_N be the set of all mappings φ from the set $\{1,\ldots,N\}$ into itself and $\nu_N(\ldots)$ be the uniform probability measure on T_N . We are interested in structural properties of a random φ which can be described in terms of its functional graph G_{φ} , e.g., a labelled directed graph on N vertices. We recall that an edge from i to j exists in the graph G_{φ} if and only if $\varphi(i)=j$. Suppose that G_{φ} has the component structure $\bar{k}=(k_1,\ldots,k_N)$, where $k_j=k_j(\varphi)$ denotes the number of connected components of size j, $1k_1+\cdots+Nk_N=N$. Denote $w(\varphi)=k_1+\cdots k_N$ the number of connected components in a mapping φ defined as that for the graph G_{φ} . Let further the limits are taken as $N\to\infty$.

In 1969 V. E. Stepanov [8] proved the central limit theorem for $w(\varphi)$. V. F. Kolchin [6] determined, for fixed m, the limiting distribution of the size of the m-th largest connected component. D. Aldous [1] improved this result by proving a global limit theorem for the component structure of a random mapping. He showed that the ordered sequence of sizes of components can be described by the Poisson-Dirichlet distribution with the parameter 1/2 on the set $\{(x_1, x_2, \ldots): x_1, x_2, \ldots \geq 0, x_1 + x_2 + \cdots = 1\}$. J.C.Hansen [5] considered the number $V_N(\varphi, t)$ of connected components in G_{φ} of size less than or equal to N^t , where $0 \leq t \leq 1$. To present her result, we set

$$W_N := W_N(\varphi, t) = (V_N(\varphi, t) - (t/2)/\log N)/\sqrt{(1/2)\log N}.$$

For a fixed $\varphi \in \mathbf{T}_N$, the function $W_N(\varphi, .)$ is an element of $\mathbf{D}[0, 1]$, the space of right-continuous functions with left limits on [0, 1]. Let \mathcal{D} be the Borel σ -field of subsets of $\mathbf{D}[0, 1]$ with respect to the uniform topology, and $\nu_N \cdot W_N^{-1}$ be the distribution of the process W_N . Denote by W the Wiener measure.

THEOREM A [5]. The measures $v_N \cdot W_N^{-1}$ weakly converge to W.

We will generalize this theorem by establishing an invariance principle for additive functions (decomposable statistics) defined on the set T_N . By definition such a function $h: T_N \to \mathbb{R}$ has the decomposition

$$h(\varphi) = \sum_{j=1}^{N} h_j(k_j(\varphi))$$
 (1)

^{*}Partially supported by Grant from Lithuanian Foundation of Studies and Science.

for each $\varphi \in \mathbf{T}_N$, where $h_j(k)$, $j \ge 1$, $k \ge 1$, is some double sequence in **R** such that $h_j(0) = 0$, $j \ge 1$. If $h_j(k) = kh_j(1)$ for all $1 \le j \le N$ and $k \ge 0$, then h is called a completely additive function (linear statistics).

It follows from [6] that, for a fixed j, $k_j(\varphi)$ asymptotically behaves like the Poisson random variable (r.v.) ξ_j with parameter

$$\lambda_j := \frac{e^{-j}}{j} \sum_{s=0}^{j-1} \frac{j^s}{s!}$$

as $j \to \infty$. Since

$$|\lambda_j - 1/(2j)| \le 8j^{-3/2}, \quad j \ge 1$$
 (2)

(see [5]), it is natural to use the following normalizing sequences

$$A(N) := \frac{1}{2} \sum_{j=1}^{N} \frac{a(j)}{j}, \qquad B^{2}(N) := \frac{1}{2} \sum_{j=1}^{N} \frac{a(j)^{2}}{j},$$

where $a(j) := h_j(1)$. Let

$$H_N := H_N(\varphi, t) = \frac{1}{B(N)} \left(\sum_{j \le y(t)} h_j(k_j(\varphi)) - A(y(t)) \right),$$

where

$$y(t) := y_N(t) = \max\{u: B^2(u) \le tB^2(N)\}$$
 $t \in [0, 1].$

In the present remark we prove the following theorem.

THEOREM. Let $B(N) \to \infty$. The measures $v_N \cdot H_N^{-1}$ weakly converge to W if and only if

$$\Lambda_N(\varepsilon) := \frac{1}{B^2(N)} \sum_{\substack{j=1\\|a(j)| \ge \varepsilon B(N)}}^N \frac{a(j)^2}{j} = o(1)$$
 (3)

for each $\varepsilon > 0$.

This result is analoguous to the functional limit theorem for additive functions on permutations established in our paper [4] written jointly with Gutti J.Babu. In this investigation, for a probability measure on the symmetric group, we have used the Ewens sampling formula which, if the parameter equals 1/2, is close to the distribution of component vector of a random mapping from T_N (see [3] for the details). Thus some similarity with the paper [4] is unavoidable, and, by this reason, our proof is fairly sketchy.

2. Proof of Theorem

Sufficiency. As in [4], the problem can be reduced to that for completely additive functions. Let ξ_j , be the independent Poisson r.vs with parameters λ_j , $1 \le j \le N$, given on some probability space $\{\Omega, \mathcal{F}, P\}$. Set $a \land b = \min\{a, b\}$,

$$X_N(t) = \frac{1}{B(N)} \left(\sum_{j \le y(t)} a(j) \xi_j - A(y(t)) \right),$$

$$X_N^r(t) = \frac{1}{B(N)} \left(\sum_{j \le y(t) \land r} a(j) \xi_j - A(y(t) \land r) \right),$$

and

$$H_N^r := H_N^r(\varphi, t) = \frac{1}{B(N)} \left(\sum_{j < y(t) \land r} a(j) k_j(\varphi) - A(y(t) \land r) \right), \qquad 1 \le r \le N.$$

Let $||\cdot||$ denote the total variation distance on the set of probability measures on \mathcal{D} .

LEMMA 1. We have

$$||v_N \cdot (H_N^r)^{-1} - P \cdot (X_N^r)^{-1}|| = o(1)$$

for an arbitrary sequence $r = r(N) \to \infty$, r = o(N). Moreover, if

$$B(N) - B(r) = o(B(N))$$
(4)

for some sequence $r = r(N) \to \infty$, then

$$P(\varepsilon) := P\left(\sup_{0 < t < 1} |X_N(t) - X_N'(t)| \ge \varepsilon\right) = o(1)$$

and

$$\nu_N(\varepsilon) := \nu_N \left(\sup_{0 \le t \le 1} |H_N(\varphi, t) - H_N^r(\varphi, t)| \ge \varepsilon \right) = o(1)$$

for each $\varepsilon > 0$.

Proof. The first assertion is a corollary of Theorem 10 in [2] or Theorem 1.3 in [7]. The estimate for the processes defined in terms of independent r.vs follows from Levy's inequality. Further we can use the inequality

$$\nu_N(\varepsilon) \ll_c (P(\varepsilon/3) + N^{-1})^c$$

with arbitray 0 < c < 1/2, following from Lemma A of the paper [4]. Lemma 1 is proved.

We now proceed with the following remark. Traditionally, in the partial sum processes the time parameter t is involved through the variances of the summands. So, in the definition of $X_N(t)$, we should have used

$$\bar{y}(t) := \max \left\{ u : \sum_{j \le u} \lambda_j a(j)^2 \le u \sum_{j \le N} \lambda_j a(j)^2 \right\}$$

instead of y(t). By (2) this change corresponds to the shift of t by the factor 1 + o(1) with the uniform in t error estimate. Since the processes $X_N(t)$ and $X_N(t(1+o(1)))$ can converge only simultaneously, we may use 1/2j instead of λ_j . Similarly, one can observe that the Lindeberg condition for the r. vs $a(j)\xi_j$ is equivalent to (3). It implies (4) and also gives weak convergence of X_N to the standard Brownian motion. Further an application of Lemma 1 completes the proof of sufficiency.

Necessity. We need a result on the mean value $M_N(f)$ of a completely multiplicative function $f: \mathbf{T}_N \to \mathbf{C}$. By definition, similarly to (1), such a function has the decomposition

$$f(\varphi) = \prod_{j=1}^{N} b(j)^{k_j(\varphi)}$$

for each $\varphi \in \mathbf{T}_N$, where b(j), $j \ge 1$, is some sequence in C.

LEMMA 2. Let $f: \mathbf{T}_N \to \mathbf{C}$ be a completely multiplicative function defined by b(j) = 1 for all but $j \in J \subset (N/2, N]$. Then

$$M_N(f) = 1 + \frac{N!e^N}{N^N} \sum_{j \in J} (b(j) - 1) \lambda_j \frac{e^{-(N-j)} (N-j)^{N-j}}{(N-j)!}.$$

Moreover, if $|b(j)| \le 1$ and $J \subset ((1-\delta)N, N]$ with sufficiently small $\delta > 0$, then

$$|M_N(f)| > c(\delta) > 0 \tag{5}$$

provided N is sufficiently large, $N > N(\delta)$.

Proof. Grouping the mappings of T_N into the classes with a fortiori prescribed component structure $\bar{k} = (k_1, \dots, k_N)$, $1k_1 + \dots + Nk_N = N$, we obtain

$$M_N(f) = \frac{1}{N^N} \sum_{\varphi \in \mathbf{T}_N} f(\varphi) = \frac{N! e^N}{N^N} \sum_{\bar{k}} \prod_{j=1}^N \frac{(b(j)\lambda_j)^{k_j}}{k_j!}.$$

Note that, if $k_j \ge 1$ for some $j \in J$, then $k_j = 1$ and $k_l = 0$ for the remaining $l \ne j$ and $l \in J$. Hence

$$M_{N}(f) = \frac{N!e^{N}}{N^{N}} \left(\sum_{\substack{k_{l}=0 \text{ v} l \in J}} \prod_{l=1}^{N} \frac{\lambda_{l}^{k_{l}}}{k_{l}!} + \sum_{j \in J} b(j) \sum_{\substack{k_{j}=1}} \prod_{l=1}^{N} \frac{\lambda_{l}^{k_{l}}}{k_{l}!} \right)$$

$$= 1 + \frac{N!e^{N}}{N^{N}} \sum_{j \in J} \left(b(j) - 1 \right) \sum_{\substack{k \\ k_{j}=1}} \prod_{l=1}^{N} \frac{\lambda_{l}^{k_{l}}}{k_{l}!}$$

$$= 1 + \sum_{j \in J} \left(b(j) - 1 \right) \left(1 - \frac{N!e^{N}}{N^{N}} \sum_{\substack{k_{j}=0 \\ k_{j}=0}} \prod_{l=1}^{N} \frac{\lambda_{l}^{k_{l}}}{k_{l}!} \right)$$

$$= 1 + \sum_{i \in J} \left(b(j) - 1 \right) \left(1 - \frac{N!e^{N}}{N^{N}} d_{j}(N) \right),$$
(6)

where

$$d_j(N) = \sum_{\substack{\bar{k} \ k_i = 0}} \prod_{l=1}^N \frac{\lambda_l^{k_l}}{k_l!}.$$

From the identities

$$\sum_{N\geq 0} d_j(N) z^N = \prod_{l\geq 1, \, l\neq j} e^{\lambda_l z^l} = e^{-\lambda_j z^j} \left(1 + \sum_{N\geq 1} \frac{N^N e^{-N}}{N!} z^N \right)$$

we have

$$d_j(N) = \sum_{\substack{k,n \ge 0 \\ j \nmid k,n = N}} (-1)^k \frac{\lambda_j^k}{k!} \frac{n^n e^{-n}}{n!} = \frac{N^N e^{-N}}{N!} - \lambda_j \frac{(N-j)^{N-j} e^{-(N-j)}}{(N-j)!}$$

provided $j \in J$. Inserting this into (6), we obtain the first assertion of Lemma 2. Using (2) and the inequalities

$$\sqrt{2\pi}n^{n+1/2}e^{-n} < n! < 2\sqrt{2\pi}n^{n+1/2}e^{-n}, \quad n > 1$$

from the expression of $M_N(f)$ we get its lower estimate. Lemma 2 is proved.

We now return to the processes. If $v_N \cdot H_N^{-1} \Rightarrow W$, then for each $0 \le t < 1$, the distribution of the difference $H_N(\varphi, 1) - H_N(\varphi, t)$ converges weakly to the normal law with zero mean and variance 1-t. Let $\phi_N(u,t), u \in \mathbf{R}$, denote the characteristic function of $H_N(\varphi, 1) - H_N(\varphi, t)$. Define $b(j) = \exp\{iua(j)/B(N)\}$ if $y(t) < j \le N$ and b(j) = 1 elsewhere. For the completely multiplicative function f defined via $f_j(1) = b(j)$, we have

$$|\phi_N(u,t)| = |M_N(f)| \le e^{-u^2/2(1-t)} + o(1) \tag{7}$$

for $u \in \mathbb{R}$ and 0 < t < 1. For t close to 1, we will apply Lemma 2. Let δ be sufficiently small and $\tau_N = \sup\{t: y(t) \le (1 - \delta)N\}$. Observe that $\tau_N \to 1$. Indeed, if $\tau_N \to t_0 < t_1 < 1$ for some subsequence $N := N' \to \infty$, then $y(t_1) \ge (1 - \delta)N$ for N sufficiently large. Estimate (5) now yields $|\phi_N(u, t_1)| > c(\delta) > 0$ uniformly in $u \in \mathbb{R}$, contradicting to (7). Thus from the definitions of y(t) and the sequence τ_N , it follows that

$$1 + o(1) \le \tau_N \le \frac{B^2(y(\tau_N) + 1)}{B^2(N)} \le \frac{B^2((1 - \delta))N + 1)}{B^2(N)} \le 1.$$

Hence $B(uN) \sim B(N)$ for each $u \in [(1-(\delta/2))N, N]$ and some $\delta > 0$. Substituting $(1-(\delta/2))N$ for N repeatedly, we deduce the existence of $r = r(N) \to \infty$ such that r = o(N) and $B(r) \sim B(N)$. Now repeating the arguments of the proof of the sufficiency part we obtain that $v_N(H_N^r(\sigma, 1) < x)$ converge to the standard normal law. This together with Lemma 1 leads to convergence of $P(X_N(1) < x)$ to the same law. Since $\xi_j/B(N)$, $j \le N$, form an infinitesimal array of random variables, and since $B(N) \to \infty$, the necessity of (3) follows from the Lindeberg-Feller theorem. This completes the proof of Theorem 1.

REFERENCES

- [1] A. Aldous, Exchangeability and Related Topics, Lecture Notes in Math., 1117, 1985, Springer, Berlin.
- [2] R. Arratia and S. Tavaré, Limit theorems for combinatorial structures via discrete process approximations, Random Structures and Algorithms, 3(3) (1992), 321-345.
- [3] R. Arratia, D. Stark, and S. Tavaré, Total variation asymptotics for Poisson process approximations of logarithmic combinatorial assemblies, Ann. of Probab., 23(3) (1995), 1347-1388.
- [4] G. J. Babu and E. Manstavičius, Brownian motion and random permutations, Ann. of Applied Probab., (submitted) 1998, 15 p.).
- [5] J. C. Hansen, A functional central limit theorem for random mappings, Ann. of Probab., 17(1) (1989), 317-332.
- [6] V. F. Kolchin, A problem of the allocation of particles in cells and random mappings, *Theory of Probab. Appl.*, 21 (1976), 48-63.
- [7] D. Stark, Explicit limits of total variation distance in approximations of random logarithmic assemblies by related Poisson process, *Combinatorics*, *Probab.*, and *Computing*, 6 (1997), 87-105.
- [8] V. E. Stepanov, Limit distributions for certain characteristics of random mappings, *Theory of Probab.* Appl., 14 (1969), 612–626.

Atsitiktinių atvaizdžių funkcinė ribinė teorema

E. Manstavičius (VU)

Naudojant adityviąsias funkcijas, apibrėžtas baigtinių aibių atvaizdžių aibėje, modeliuojamas Brown'o judesys. Rastos būtinosios ir pakankamosios sąlygos, kada atitinkama tikimybinių matų seka silpnai konverguoja į Wiener'io matą.