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Viscosity solutions to the Dirichlet problem of Bellman equation

H. Pragarauskas (MII)

1. Introduction

Bellman equations that are, in general, fully nonlinear degenerate integrodifferential
equations of the second order, play an important role in the theory of controlled continuous
time Markov processes. In many cases, the payoff functions are classical or generalized
solutions of Bellman equations.

The class of viscosity solutions introduced by M.G. Crandall and P.L. Lions [1] is
an important class of generalized solutions of Bellman equations. Analysis of viscosity
solutions usually requires minimum regularity both of initial data and of solutions.

There are some difficulties in defining the boundary conditions for boundary value
problems of degenerate Bellman equations. For example, the Dirichlet problem may have
no viscosity solution continuous up to the boundary and coinciding with a given function on
the entire boundary. In such a case, the boundary condition is understood in a generalized
viscosity sense (see [2], Section 7).

In this paper, we consider the existence of viscosity solutions to the Dirichlet problem
of degenerate Bellman equations with a generalized boundary condition. The approach is
based on a probabilistic representation of a viscosity solution.

2. Notation, definitions, and the main result

Let D be an open, bounded, and connected set in R? with the boundary 3D and the
closure D. Let A ={1,2,...}, and let [1(dz) = dz/|z|?*.

Suppose that we are given measurable functions o = {a,.‘j.(x)}, b= {bf(x)}, ¢ =
(*(x, )}, r=r"(x), f=f*Cx),andg=¢g(x); i,j=1....d; x,2€ RY; a € A,
satisfying the following assumption.

Assumption 1. (i). There exists a constant K such that, for any x,y € RY, a € A,
le® )l + 16%(x)| + f |c® (x, 2)I*TI(dz) < K,
0% (x) — eI + 6% (x) = b* O + f Ic(x, 2) — ¢ (y, 2)PT1(dz2) < K|x — y/

(ii) r, f, and g are bounded, continuous in x uniformly with respect to e, and r > A
for some constant A > 0.
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Denote by C(I") the class of bounded and continuous functions on I', and denote by
C2%(I") the class of bounded and continuous functions on T, together with their first and
second order partial derivatives.

1
Denote a = an* and introduce the operators L*, F*, o € A, and F by

d d
Lu(x) = ) af ()t (¥) + Y b (x)u, (x)
i,j=1 i=l1

d
+ / [u(x +c%(x,2)) —u(x) — Zux,- (x)cf (x, z)]l'l(dz),
i=1

F[u](x) = L*u(x) — r*(x)u(x) + f*(x),
Flu](x) = sup F*[u](x).

a€cA

We consider the Dirichlet problem for the Bellman equation

Flul(x) =0, x €D, 1
u(x) =g(x), xeRAN\D, ()

in the sense of viscosity solutions (see Definition 1 and Remark 1 below).

Definition 1. A function u € C(D), u = g on R¥\D, is called a viscosity solution
to the problem (1)—~(2) with generalized boundary condition if it possesses the following
properties:

(i) if x € D and there exists a function ¢ € C2(R?) such that ¢(x) = u(x) and ¢ > u
(resp. ¢ < u) on RY, then F[¢](x) > 0 (resp. F[¢](x) <O0).

(i) if x € 8D, u(x) > g(x) (resp. u(x) < g(x)), and there exists a function ¢ €
C2(R?) such that ¢(x) = u(x) and ¢ > u (resp. ¢ < u) on R?, then F[@](x) > O (resp.
Fl¢)(x) < 0).

. Remark 1. We say that boundary condition (2) is satisfied in the strong viscosity sense
ifu=gon R4\D. In this case, in order to prove that a function u is a viscosity solution
10 problem (1)—(2), it remains to verify property (i) only.

Let (R, F, P) be a complete probability space with a complete right-continuous filtration
F={(7, t> 0}, F =\V/,soF:- Denote by 2 the set of all F;-progressively measurable
functions o = o (w) on [0,/00) x  with values in A.

Consider the strong solutions X; = XM, a e, x € R4, of Ito equations

t t t
Xi=x +f o®(X,)dW, +f b™(X,)du + / /c"“(Xu, 2)q(dudz), A3)
0 0 0

where (w,, %) is a standard Wiener process in R, q(dt,dz) = p(dtdz) — I1(dz)dt, and
(P(d{, dz), F)) is a Poisson measure with the compensator [1(dz)dt. As is well known,
€quation (3) has a unique solution for any ¢ € 2 and x € R?.
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Introduce the payoff function

™
) = supE{ [ 70 100t + €708 (Kep) My on].
ae? 0
where 1p = " = inf{t > 0: X** ¢ D}, tp = oo if the set in brackets is empty,
X, = X**, and ¢ = ¢f"* = [ r* (Xg¥)ds.
It is not difficult to prove that v is measurable and bounded. Obviously, v = g on
R4\ D, but not necessarily on 3D.
Introduce the following assumption.

Assumption 2. For all « € 2 and x € D, the process
IATD
s,a'x = e‘«’t/\fp v(XtAtD) + [ e_'p’f(Xs)ds, t ? 0,
0

where 1p = 5, @ = ¢/, and X; = X%, is a right-continuous JF;-supermartingale.

Remark 2. Assumption 2 implies the Bellman principle
TpAL
vy = sup{ [ e70 £ s + €O u(Xep ) @
0

forallt > 0.
Indeed,
v(x) = B > E&** > lim E&™ = % (x).

Taking here the upper bounds over a € 2, we get 4).
The main result of the paper is the following theorem.

THEOREM 1. Let Assumptions 1 and 2 be satisfied, and let v € CD). Thenvisa
viscosity solution to problem (1)~(2).

Remark 3. It is not easy to give nontrivial sufficient conditions on the initial data, which
assure that v € C(D). For this purpose, appropriate barrier functions are investigated (cf.
[3]). Moreover, it is usually assumed that the boundary 4D consists of two parts with
nonintersecting closures, one of which is accessible and the other one is totally inaccessible.
Assumption 2 can be verified in many cases if v e C(D).

3. Proof of Theorem 1

We give here a sketch of the proof only.
Let x € D, and let there exist a fuction ¢ € C2(R?) such that ¢(x) = v(x) and ¢ >V
on RY. By the Ito formula we have, for all@ € 2 and ¢ > 0,

INTD
s =B [ UL s + oo Kpa)). O
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where tp = 1%, ¢ = ", X, = X]"*. Together with the Bellman principle, this yields

0 =u(x) — $(x) = supE| fo P s P (g1(X, ) ds

acA

TpAt
¥ () = $)(Xepn) | < SUpE fo " e FlpI(X, )ds.

aeA

Using this inequality and Assumption 1, it is not difficult to prove that F[¢] € C(R?) and
1 IpAt
0<limzsupE [ e FIgI(Xo)ds = FIgI(o).
0t ger Jo

Let x € 9D and v(x) > g(x). Fix arbitrary sequences ¢, | 0 and ¢,, | 0, m 1 oo.
Obviously, there exists a sequence o, € A, m =1, 2, ..., such that

v(x) < V" (x) + Emtm.

The following two cases are possible:

G) lim P[rg'"" > 0] =0,

m—00

i) lim P[rg""" > 0] > 0.

m—00

In the case (i), we have v(x) < g(x), by the definition of v. Therefore, it remains to
consider the case (ii). By Assumption 2 and Ito formula, we have

0=v(x) —¢(x) < vV™(x) — d(x) + emtm
TpAim
gE{ / D e—W.r f“ms (Xs)ds + e—'/’tDNm U(XID/\I,,.)}
0

TpAlm
— $(x) + emim <E / €% Fons [$1(X,)ds + Emim
0

TDAIm
<E f =% F[$)(X;)ds + emtm,
0

Where 1 = oo, o =™, and X, = X;™*.
The last inequality, together with the continuity of F[¢], yields

am.X
0< Flp)(x) lim EX2— Al
m—00 tm

Hence Fg](x) > 0.
t us prove the converse inequalities (see Definition 1).
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Let x € D, and let there exist a function ¢ € C?(R¢) such that ¢(x) = v(x) and ¢ < v
on R¢. Fix an arbitrary k € A. Using (5), written for the constant strategy a; = k € A,
and the Bellman principle, we get

0=1v(x)—ox)
IpAL

2 E[ f e * F¥[¢)(X;) ds + e~ (v — ¢)(erm)}

1Y
>E f =% F[$](X,) ds,
0

where tp = 5%, ¢ = ¢F'*, and X, = X{"*. Using this inequality and Assumption 1, it
is not difficult to prove that F¥[¢] € C(R?), k € A, and

TpAL

.1 " k
0> lim f 9 FHGI(X,) ds = FH[](x).
0

Since k was arbitrary, this yields
F[¢)(x) <0.

Let x € dD and v(x) < g(x). Fix an arbitrary k € A. The following two cases are
possible:

G) P {rf,-" > 0} =0,
(i) P {r,’;-‘ > 0] > 0.

In the case (i), we have v(x) > g(x), by the definition of v. Therefore, it remains to
consider the case (ii). By the Bellman principle and the Ito formula, we have

0=v(x) —¢x)

TIpAL

> E[ / e fE(X,)ds + e Y pNy(Xpar) — ¢(x)}

TIpAt

= E[ f e F¥[9)(X;) ds + e™™ (v — ¢)(XrDA1)]
0

TIpAt

S E f =% F[)(X,) ds,
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where 7p = t5%, ¢ = ¢F*, and X, = X**. This inequality, together with the continuity

of Fk[¢], yields

k,x
0>limE (r” A 1) F ().

tl0 t

Hence,
FX[g](x) < 0.

Since k € A was arbitrary, we get
Fl¢l(x) <0.

The theorem is proved.
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Belmano lygties dirichlé uidavinio viskoziniai sprendiniai
H. Pragarauskas (MII)

Apralytos pakankamos integrodiferencialinés Belmano lygties Kosy-Dirichl¢ uZdavinio viskozinio spren-
dinio egzistavimo salygos. Tyrimas pagristas Markovo procesy optimaliojo valdymo teorijos metodais.



