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Real ruled degree four toric surfaces in projective 3-space*

S. Zubé (VU)

1. Introduction

In this notes a rational, ruled with a directrix line surfaces of order four in a real
projective 3-space P*(R) are studied and classified. In short we denote them by X3 ;.
It turns out that those surfaces have a singular curve of degree three. We describe all
possibilities for singular curves and pinch points on those curves.

One can get any surface X 1.3 as the linear projection (from a line) of another surface
X|; C PS(R). Geometrically the surface X 3 can be obtained as follows. Take a line
d\, projective 3-subspace W C P5 (W Nd; = @), rational normal cubic curve dsC W
and fix some isomorphism f: d; — dj then X 1.3 is the union of all lines between points
* €dy and f(x) € ds. This is so called rational ruled surface of type X3,; in the notation
of the paper [1] (for more information about those surfaces see pp. 523-527 in the book
[6]). Notice that if we choose other line d; and cubic d3 then we obtain a new surface
which is projectively equivalent to X' ;. So for classification of surfaces X, ; we need
to classify all possible positions of the projection line to respect the surface X} 3. One
€an prove by counting parameters that there is 3-parameter family of projectively non-
®quivalent surfaces of type X3 in P3(R). It is possible to give explicitly formulas for
those parameters but we will not develop this point here.

One can prove that rational ruled surfaces of order four in P3(R) are of two types,
Namely X ,, §(2, 1). The surfaces of type S(2, 1) can be parameterized by the points of
PI(R) x P'(R) using polynomials of bidegree (2,1). The classification of surfaces S22, 1)
is presented in [8] and this paper can be considered as an extension of results and methods
obtained in the article [8] for the surfaces of type X ;. It is worth pointing out that the
surfaces §(2, 1), X 1.3 are toric varieties. The toric structure of S(2, 1) and X 1.3 correspond
t0 polygons:

$(2,1) I::J X1 1::__\._.
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We refer the reader for the basic theory of toric varieties to [5]. It is very useful for
our studies and geometric design to notice that both surfaces are uniquely defined by the
position of six control points with weights in P*>(R).

The paper is organized into three sections as follows. In Section 2 we introduce notation
and definitions in the form they will be used later on. The collection of main results and
proofs are presented in Section 3.

2. Notations and definitions

We will work over the real field R. We denote by P*(R) projective n-space. We
will omit the field R in the notations below. A point x € P" is represented in terms
of homogeneous coordinates x = (xp : x; : ... : x,). Denote by (a,b,...,c) the
smallest projective space which contains subsets a, b,...,c C P*. We write X = Y if
X is isomorphic to Y. The variety defined by homogeneous polynomials fi, f>, ..., fk
is denoted as {fi, f2,..., fil ={x e P*| fi(x) =0, fo(x) =0,..., fi(x) = 0}. Let
Sy = {x = (xo, x1, X2, X3) € P3| f(x) = 0} Denote by

3
Sing(S) = [xesf | a—i:o, for all i=0,...,3}
(]

the singular variety of S. Also denote the variety of triple points by

2f
3x,'3x_,'

Sings(Sy) = {x  Sing(5)) | =0, forall i,j=0,..., 3] .

We shall say that a curve C C Sy is a double curve if C C Sing(Sy) and C contains 2
finite number of triple points. Similarly C is a triple curve if C C Sing;(Sy). A pinch
point p € Sy is a point on a double curve C where the rank of Hessian

3?f

ax,'an:logi‘jS:‘

Hf:=[

is equal or less than one. Geometrically this means that there is only one tangent plane
for the pinch point p. Here by definition the tangent plane is the plane of lines which are
the limits of the chordal lines (p, x), x € Sy when x approaches to p. Recall that for 2
general double point on a general double curve C there are two tangent planes and only
a finite number of points on a general double curve can be pinch points. We emphasize
that there is a special double curve C such that on any point of C there exists only on¢
tangent plane (see the definition below). There is also the third definition of a pinch point.
Let us denote by o: §' — Sy the desingularization map of S; and B := o ~!(C) then th
map o: B — C is two-to-one and pinch points arc exactly ramification points for this
map (i.e. p is a pinch point if 0~!(p) is one point). A cuspidal curve C is a double
curve on a surface § such that every point on C is a pinch point. If o: §' — Sy is the
desingularization map of § and B := o~ 1(C) then the map o: B — C is one-to-on¢:
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This is the distinguished property between a cuspidal curve and two-fold double curve.
A double curve is two-fold (or it has multiplicity two) if tangent sheets along this curve
are the same but have different curvature. A surface formed by a single infinite system of
straight lines is called a ruled surface; the lines are called the generators of the surface.
A curve on a ruled surface meeting every generator in one point will be called a directrix.

3. Projection from P° to P3

Consider the surface X ;'3 C P’ defined as follows:

Xy, = [rank(xo *2 X3 x“):l]. (1)

X1 X3 X4 X5
This is a normal rational ruled surface of degree four with a directrix line {x, x3, x4, x5}
and a directrix cubic (0:0:¢3: 12 :¢: 1) C {xg, x1} = P? (see [1]). By the definition
the surface X/ , is the linear projection of the normal surface X 13 from P3 to P? (see [3]
§54). ' '

PROPOSITION 1. Suppose C C X 1.3 is a curve of degree two then C = I, Ul,, where
I, 1 are lines on X/ ,.

Proof. A smooth irreducible curve C of degree two belongs to a plane P. Consider
the intersection of the surface X 1.3 and projective 4-space W, where W = (P, g)(gisa
generator of the ruled surface X1 3). One can see that X1 3;NW=CUgU/, where I is
a line on X 1.3- Notice that any generator of X 1.3 meets W in one point therefore a curve
?Ul’ is a directrix of X 1.3- Hence if we choose W such that it has not contain a directrix
line then a conic C should be a directrix. But from this we get that degree of X, is
three. This contradiction prove that a curve C should be reducible. '

Take any line ! C P° and a projective 3-space W C PS such that /N W = @. Then
consider a linear projection

Tt P\l —> W=P. )

By the definition this means that 7, w(p) = q where g = WN(l, p). Recall that (I, p) ~ P2
hence p_rojective 2-space (I, p) and projective 3-space W has exactly one common point
9- Notice that the choice of W is not very important because 7, , = ¢ o 7, ,» here
W Wisa projective isomorphism, i.e. projections essentially are dependent on the
choose of the line but not on projective 3-space W. For this reasons we usually omit the

isslcond argument and hope that the meaning of W will be claire from the context or not
portant,

PROPOSITION 2. Assume m: X\ 3 = X13 is a projection and L is a singular line for
1.3. Then one of the following properties holds:
) ‘(a) L is a double line if and only if n,"l(L) =d\Ug', here d is a directrix line and
8 is a generator.
a d('b) L'is a triple line if and only ifn,_l(L) =dyUg'ug’ or rr,'l(L) =ds , here d, is
trectrix line, ds is a smooth directrix cubic g', 8" are generators of X 13
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Proof. (a) If L is a double line on X, 3 then deg nr,"l(L) = 2. This means that
n,"(L) =1 U, (by the Proposition 1). Take any plane H c P}, L C H then HN X3 =
2L U U!". Therefore the line L is a directrix. Hence we have n7 Y (L) = dyUgs here d
is a directrix line on X] ;. Notice that in this case the line of projection ! meets exactly
one plane P(A) = (d, I(A)) for A € P!, here I()) is a generator of X 3.

(b) If L is a triple line then deg n',‘l(L) = 3. If we consider the intersection H N
X13=3LUIl (L C H is a plane) we see that L is a directrix line. Therefore a curve
n,‘l(L) is also a directrix. Assume zt,"l(L) is not a smooth curve then by Proposition
1 yt,"l(L) = d; U g U g" here d, is a directrix line, g, g” are generators of X, If
n,‘l(L) = d3 is smooth then it should be a smooth directrix cubic curve on X 1.3 (this will
be if and only if the projection line ! belongs to projective 3-space U, d3 C U).

PROPOSITION 3. Let X13 C P? be a rational ruled surface of degree four then a
singular curve B of X 5 has degree three.

Proof. Take any plane H C P3 such that g C H, here g is a generator of X1 3
then HN X3 = g Ucs (c3 is a plane cubic). Notice that any generator of X, 3 meets
exactly in one point the plane H therefore the cubic cj3 is a directrix and any point on
this cubic corresponds to a generator of X' ;. Since the generator g and cubic c3 have
three common points p, p;, p2 one of them p corresponds to the generator g and through
rest two points p;, p» passes another generators g;, g; of X} 3. One can see that there
are two tangent planes for the surface X/ ; in the points p;,i = 1,2, namely H, (g, gi)-
Therefore a singular curve B meets any generator of X| ; in two points. Hence a curve
B has degree more or equal to three. The intersection of X , and any general plane P is
a plane quartic curve which has at most three singular points therefore deg B = 3. Note
that there are possible degeneration i.e. the singular curve can be reducible or even a line
of triple points.

If deg X 3 < 3 then the complete real projective classification obtained in [2], see also
[8]. If deg X, 3 = 4 there are three possibilities for singularities of X 3.

A. Sing(X, 3) = C is smooth cubic curve in P3. The points on this cubic are double points
for X 3. There are four pinch points on C. It can be that all four of them are real or two
pinch points are real and two imaginary or four pinch points are not real. (The proof is
similar to the proof of Proposition 13 in [8] (see also a remark on the page 25)).

B. Sing(S) = L U C where L is a line of double points on S, C is a smooth conic of
double points which intersect L in one point. There is one real pinch point on the line
L and no pinch points on the conic C. (The proof is similar to the proof of Propositions
9,10 in [8] (see also a remark on the page 23)).

C. Sing(S) = L is the line of triple points. This is the most degenerated case. Also W€
say that the point p € L is the pinch point for S if there is a plane H 5 p such that HN S
is degree four reducible curve which reducible components are a line and a smooth conic-:
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Geometrically this means that there are two (or less) tangent planes at point p. Recall that
for general triple point there are three different tangent planes. It turns out that on triple
line L there are four (real or complex) pinch points. (The proof is similar to the proof of
Propositions 4,5 in [8] (see also a remark on the page 17)).
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Realiis tiesialinijiniai toriniai ketvirtojo laipsnio pavirSiai projekcinéje trimatéje erdvéje

S. Zubé (VU)

Darbe nagrinéjami ir klasifikuojami racionalis realiis tiesialinijiniai ketvirtojo laipsnio su direktrisine
tiese pavirSiai. Pasirodo, kad tokie paviriai turi tretios eilés kreive ypatingyjy tasky. Straipsnyje yra
suklasifikuotos visos tokios galimos ypatingos kreivés ir pinfo ta¥kai jose. Tai turéty biti pakankama
norint gauti pilng projekcine tokiy realiy pavirsiy klasifikacija.



