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On intuitionistic branching tense logic with weak induction

R. Alonderis (MII)

1. Introduction

As it is well known, the classical first-order linear and branching tense logics with the
induction axiom (AAD(A D OA)) D DA are incomplete (see, e.g., [3, 4]). The same holds
for intuitionistic variants of the logics as well. In [1], the completeness and semantical
admissibility of cut are proved with respect to the classical first-order branching tense
logic with the weak induction, that is to say with the axiom (A A ODA) D DA instead
of the induction axiom (A A O(A D 0A)) D OA. In the paper, we prove: the syntactical
admissibility of cut, Harrop’s theorem and the interpolation theorem for a calculus LBJ. In
the construction of the calculus LBJ we use an intuitionistic variant of a sequent calculus
— LJ - without structural rules:

I. Axioms: I, A—> A; I,f— A

2. Derivation rules:

I'A— B (=) ADB, T - A; B'F—)A(D—ﬂ
—_— (>
I'->ADB ADB,I'> A
F‘—)A;I‘—)B(_}A) A,B,F—)A(A_))
> AAB AAB, T = A
F—)Aorl‘—»B( v) AT > A; B,F—)A(V )
- -
> AVB AVBT'—> A
' > A A(t),VxA(x), I = A
I' > VxA(x) VxA(x), T -> A
r At Ab), T - A
=40 3 AB =>4 o,
I' > 3IxA(x) IxAx), > A

Here: f denotes ‘false’; A, B denote arbitrary formulae; A € {2, D} (D is an arbitrary
formula); T denotes a finite, possibly empty multiset of formulae; x denotes a bound
variable; ¢ denotes a term which is free for x in A(x); b denotes a free variable which
does not occur in conclussions of the rules (— V), (3 —); we use different letters to
denote free and bound variables so that a variable can be only free or only bound; we do
not have rules for negation: 1A =4s A D f.
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The calculus LB/J is obtained from the calculus LJ by adding the following four rules
for handling ‘0’ (always) and ‘Q’(next) operators:

r— A ©) F—)A;I‘—-)QDA(_)D)
I'I,oF—>oAO ' > oA
A, O0DA, T —» A or - A
m) (O
Aroa O Hosom®

Here: ', A,A are asin LJ; if ' = Ay, A;,..., A,, then OI' = QA, 04z, ..., A,
and OI" = OA|, OA,, ...,0Ap; IT denotes an arbitrary finite, possibly empty multiset of
formulae. The rule (— O) corresponds to the weak induction axiom (A A OOA) D DA.

2. Cut Elimination

Since our sequents are of multiset type and have no more than one formula in succedent:
the structural rule of permutation has no sense here; the structural rule of contraction is
impossible in succedent.

LEMMA 1. Any LBJ derivable sequent has an atomic derivation, i.e., every axiom
obtained in the derivation has the T', E — E shape, where E is an atomic formula.

Proof. The lemma is proved by the complexity of the formulae.

LEMMA 2. Let (i) € {(—=D), (O=).(V =), (= A),3 =), (= V), (@), (— O)}
and S be the sequent having the shape of the rule (i). Let S* be the sequent having the
shape of a premiss of the rule (i) € {(=D), (V. =), (= A),3@ =), (= V), @), (—
0)} or the right premiss of (O—), then LBJ F2 S = LBJ +2" $* and h(D*) < h(D),
where D stands for an atomic derivation and h(D) stands for the height of D.

Proof. The lemma is proved by induction on k(D).

LEMMA 3. If there exists an LBJ derivation with the structural rule of contraction in
antecedent of a sequent, then there exists an LBJ derivation without the structural rule
of contraction in antecedent with the same end sequent.

Proof. We consider only atomic derivations here. The lemma is proved by induction on
the ordered triplet < n, G, h >, where n denotes the number of contraction applications in
a derivation, G denotes the complexity of the main formula of contraction and is inductively
defined as follows:

1) G(E) = 0;

2) G(ABD) = G(A) +G(D) + 1 (© € {D, A, V]);

3) if B = QOA, then G(OOA) = G(DA), otherwise

G(QD) =G(D) +1(Q € {¥x,3x,0,0});
here: E denotes an atomic formula; A, D denote arbitrary formulae; x denotes a bound
variable,
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h denotes the height of the derivation of the sequent to which contraction was applied for
the first time with respect to the initial derivation. We make use, as well, of Lemmas 1, 2.

LEMMA 4. If there exists an LBJ derivation with the structural rule of weakening of
a sequent, then there exists an LBJ derivation without the structural rule of weakening
of the same sequent.

Proof . The lemma is proved by induction on the ordered pair < n, h > where n stands
for the number of weakening applications in a derivation, and & stands for the height of a
derivation of the sequent to which weakening was applied for the first time with respect
to the initial derivation.

LEMMA 5. If the final step in a LBJ derivation of a sequent is the rule of cut and
there are no more cuts in the derivation, then there exists a LBJ derivation without cut
with the same end sequent.

Proof. We have:

@); V2 [Z‘I‘TA (k)

I, - A

V1, V, stand here for the derivations of [1 - C and C,I" — A, respectively. The heights
of Vi, V, are denoted by h(V)), h(Va).

The complexity of a formula B, denoted by G(B), is defined as in the proof of Lemma 3.

We prove the lemma by induction on the ordered triplet < G, P, H >. The parameter
G stands for the complexity of the cut formula; P stands for the number of applications
of the rules (O —), (— O) in a derivation; H = h(V;) + h(V5).

1) (i), (k) are the applications of logical rules: these cases are considered in the
traditional way (using the hypothesis on G or H);

2) (i) or (k) is an application of a logical rule: these cases are considered by the
hypothesis on H;

) =@), k)=@->):

ol-> A . A,ODA,T—> A
Molo>oA” GATSA
m;,oll,'-> A

Applying (O) to OIT — A we get OI1 — OA; applying (O) to this sequent we obtain §; =
IT, Ty, ool — ODA; applying (cut) and the hypothesis on P to S; and A, DA, T — A
we obtain S = I, I1;, 0OI1, I, A — A; by applying (cut) and the hypothesis on G to
oIl — A and S, we get oI, IT, Iy, ooIl, " — A; applying (0 —) to the last sequent
we get IT,,all, " — A;

4) (i) =(—>0), (k) =(@O—>):

IM— A; 11— ooA o) A,O0A, T - A
IN— DA DA, ' > A

Vl{l'l—>C
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By applying (cut) and the hypothesis on H to [T — OO0A and A, OOA,T" > A we get
S; = I, A, T — A; applying (cut), the hypothesis on G, (C —) ((C —) denotes an
application of the antecedent contraction rule) and Lemma 4 to IT — A and S, we get
Mn,r—A;
5) () =(—>0), (k) =(@0):
In— B; 1 - oOB oB,or' - A
fooE % M.oBor—>od
I, mor - oA

(cut).

Applying (cut) and the hypothesis on H to I1 — OB and 0B,0I' —> A we get §; =
M,or’ —» A; applying (0) to 0B,0l’ - A we get OB,0I' — DA, applying (O) to
this sequent we get S, = I, ITy, 00B, ool’ — ODA; applying (cut) and the hypothesis
on Pto 1 > oOB and S, we get S3 = I, 11, [T;, 00" = OOA; applying (W —)
((W —) denotes an application of the antecedent weakening rule) and Lemma 4 to S,
we get Sy = Iy, 1,0’ — A; applying (O —) to S3 we get Ss = arl, [T, [1; —» OOoA;
applying (— O) to S4 and S5 we get I1, IT;, 0’ — OA;

6) the rest cases when (i), (k) € {(0), (@ —), (= D), (O)} are considered by the
hypothesis on H.

THEOREM. If a sequent is derivable in LBJ + (cut), then the sequent is derivable in
LBJ.

Proof. The theorem is proved by induction on the number of applications of the cut
rule and by using Lemma 5.

3. Harrop’s Theorem

THEOREM (Harrop). Let us assume that T is such a finite multiset of formulae that
every occurrence of “v’, ‘A’ in it is within the scope of ‘O’, or within the left scope of
‘D’ then:

1) the sequent T — AV B is derivable in LBJ iff T — A or I' — B is derivable in
LBJ,

2) the sequent T' — 3xF(x) is derivable in LBJ iff, for some term t, T — F(t) is
derivable in LJ.

Although the theorem differs a bit from the original version of Harrop’s theorem, it
still may well be called Harrop’s theorem.

Proof. We prove the theorem by induction on the height of derivation. The first part
of the theorem:
(<) case is obvious.
(=):
''—-AvB .

TS ave



On intuitionistic branching tense logic with weak induction 299

When (i) € {(D—), (A =), (Vv =), (¥ =), (3 =), (= V)}, the proof is well known
(see, e.g., [2]). It follows from the shape of the LBJ rules and the given sequent that the
only possible remaining case is (i) = (0 —):

C,ouC, ' > AVB
oC,’'- AVB

@-).

Obviously, we can apply the hypothesis of induction and get that C,o0C, T — A or
C,00C, ' — B is derivable in LBJ. This implies that oC,I" — A or oC,I' - B is
derivable in LBJ.

The second part of the theorem:

(&) case is obvious.

(=)

' > AxF(x) )
T > xFx)

Again, when (i) € {(D=), (A =), (V =), (VY =),3 =), (= 3I)}, the proof is well
known. It follows from the shape of LBJ rules and the given sequent that the only
possible remaining case is (i) = (O —):

A,00A, T —» AxF(x)
O0A, T’ - 3xF(x)

@-).

By the induction hypothesis A, O0OA, " — F(¢) is derivable in LBJ for some ¢. That
implies the derivability of 0A,I" — F(¢) in LBJ.

Example. Using Harrop’s theorem we show that O(AV B) — OAVOB is non-derivable
in LBJ. Instead of O(A vV B) = OA Vv OB, by Harrop’s theorem we can consider the
following two sequents: O(A vV B) = OA and O(A vV B) — OB (we consider them in
bottom-up fashion):

O(AV B) > DA O(AV B) > OB

In general, the sequents B — A, A — B are non-derivable in LBJ.

4, Interpolation Theorem

LEMMA. Suppose that ' — A is derivable in LBJ. Let us consider an arbitrary
partition {I"y; I'2} of T': it is possible that Ty or (and) T"; is (are) empty, Ty UT, =T
Then there exists a formula ‘C’ called the interpolant of the partition {T'y; T';} such that:

1)y = C and C,Ty — A are derivable in LBJ

2) all free variables, constants, and predicate symbols, except perhaps ‘f’, of C occur
inTy and Ty U A.



300 R. Alonderis

Proof. The lemma is proved by the height of the derivation of I' — A:

r5ad)
1) when (i) is a logical rule, see [2].
2) (i) = (— D):
> A; I'>00A
' —>0A

Suppose that the partition of T" is {I';; T'2}. By the induction hypothesis we have that
' - Cy and C, T, > A; Ty = C; and C;, ', — OOA are derivable in LBJ. This
implies that I'j — C; A C2 and Cy A G, "2 — DA are derivable in LBJ. Thus the
required interpolant of the partition {[";; I'2} is C1 A Ca.

3) () = (©O):

(— D).

r- A

In,or' - 0A ©)

Suppose that the partition of IT, O is {1y, OT'1; Mz, OI'2}. By the induction hypothesis
we have that '} — C and C,T'; — A are derivable in LBJ. This immediately implies
that I1;, o'y = OC and Iy, OI'2, OC — QA are derivable in LBJ. Thus the required
interpolant of the partition {I';; 'z} is OC.

4) (i) = (0): the case is considered in the same way as 3).

5) () =@—):

A,00A, > A
DA, > A

The two possible kinds of the partition of OA, " are: {0A, I'y; 'z} and {I"y; 0A, T2} By
the hypothesis of induction we have that A, ODA, 'y — C;; C,T, > AT - O
and Cp, A, OOA, T, — A are derivable in LBJ. That immediately implies the LBJ
derivability of 0A, 'y = C; and C3,04, T2 — A. Thus the interpolant of the partition
(DA, Ty; Ty} is Cy and that of the partition {I"y; OA, Iz} is C.

@-)

THEOREM (interpolation theorem). Suppose that the formula A O B is derivable in
LBJ. Then there exists a formula ‘C’ called the interpolant of the formula A O B such
that formulas A D C and C D B are derivable in LBJ and constants, variables, and
predicate symbols (except for ‘ f’) which do not occur in both A and B, are absent in C
as well.

Proof. The proof of the theorem follows from the above lemma. See also [2].
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On intuitionistic branching tense logic with weak induction

R. Alonderis

In the paper, the first-order branching tense logic calculus is given: LBJ with the weak induction, that
is to say with the axiom (A A OOA) D DA instead of the induction axiom (A ADO(A D QA)) D DOA.
The syntactical cut elimination theorem, Harrop’s theorem and the interpolation theorem is proved here
with respect to the LBJ calculus.



