LMD mokslo darbai, 349-354
1998, Vilnius

The risk of classification in discriminant analysis of mixed variables

K. Dudinskas (KU)

1. Introduction

Suppose that individuals come from one of two mutually exclusive and exhaustive
populations £2;, 2 with positive prior probabilities 7y, 7, respectively, where Z?=1 =
1. The assignment of individual to one of two populations is based on observation of
mixed feature variable U’ = (X', Y’). The prime denotes vector transpose. Here Xe X
is a p-dimensional vector of continuous variables and ¥’ = (¥}, ..., Y,) is an incidence
vector corresponding to the vector of b discrete variables. assume without loss of generality
that b discrete variates are all binary, each taking on zero or one values. Then r = 2°,
The observed values of Y serve to break down the classification problem between €2, and
£2; into r locations (cells) wherein the classification is based solely on the continuous
observations is performed (Krzanowski, 1975). Then

r
P =y/@)=]]q
c=1
or Y NMUItC(Iv qi)’ Where q;l = (qilv erey qic)’
r
Zqic= 1, O0<gqgi, i=1,2,c=1,...,r
c=1

Let the pdf p;.(x) of X in the cell c of ©; belong to the parametric family F;, =
{Pic(x;0),0;c€R™}),i=1,2,c=1,...,r.

Further, the dependence of any functions on any distribution parameters will be sup-
pressed in the cases when functions are evaluated at the true values of these parameters
denoted by an asterisk *, e.g. pic(x; ©},) = pic(x). Let d.(.) denote a classification rule
(CR) for given Y. = 1. Then d.(x) = i implies that an individual with continuous feature
vector X = x and Y, = 1 is to be assigned to the population ; (i =1,2,c=1,...,r).
Let C(i, j) denotes the cost of allocation when an individual from £; is allocated to Q;
and let C(i, j) always be finite, i.e. max; j=1,2 C(i, j) = Co < 00.

When prior probabilities {r;}, densities { p;c(x)} and {g;} are known, the risk R ({d.(-)})
associated with rules {d.(-)} can be expressed as

2 r
RAOD = Yom Y- aic [ €. delo) pretore. 1)

i=1 c=1 X
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Then Bayes classification rule (BCR) dp.. (x) minimizing the risk R ({d. (-)}) is defined

as
dp. (x) = arg max licpic (x), 2
where
lie=miqic (C(i,3—i)—-C(,i)) (=12,c=1,...,r). (3)
Therefore, Bayes risk Rp is
2 r
Ro=Ym Y ac [ C(dae) pictdds = inf | RAGOD. )
i=l  c=I X {dc(.)eD}

where D is the set of all CR {d.(.)} defined before.

In practical applications, the parameters {©;.} and {g;.} usually are unknown.

Suppose that in order to estimate unknown parameters there are M individuals of known
origin on which feature vector U has been recorded. That data is referred to in pattern
recognition literature as training sample (TS). The only case of independent observations
in TS will be considered in this paper. Suppose that TS realized under sampling design,
which consists of two consequent stages. The first stage usually called separate sampling.
This sample often is called stratified sample. Then M; individuals are randomly taken
from each population ; (i = 1, 2). The number of individuals M;. taken from cell c in
Q; are random and Y . Mic = M;, i =1,2.

Suppose that there are m; elements of all {©;.} known a priori to be distinct and let
Oc be the vector of m0 elements known a priori to be equal ie., ©; = (6;.,6).) =

(BOdor -+ 000, 6L, ..., 0") , where 0 %, #£ 0 % fori# j, (,j=1,2k=1,...,m,
c=1,...,r),and mg+m; =m.
Let q,.0 = (q“, . ..,ql,,_l) (i = 1,2). Denote a as n = 2r +mg+ 2m; — 2-dimensional

vector of parameters, i.e.

a= ((‘1?)/' (qg)l’o(l)l’oil’oél’ "°'0(I)rv9;r’9£r) = (“1’ ---’“")' &)

Let P C R" be the set of all possible «, such that ®; € K (i = 1, 2). Then suppose
that

dc(xv a) = arg T?’é(licpic(x’ eit)’ (6)
and )
Ra@ =Y m Y- dic [ Clideta a)pica)a )
i=1 c=1 X

The so-called estimative approach to the choice of sample-based classification rule
d;(x) is used. The unknown parameters q?, qg, {6oc, O1c, Oac} are replaced by appropriate
estimates from the TS in the BCR, i.e. d;c(x) = d.(x, &), where

!
A __ (20 A0 or pr D7 Y. YA,
a= (ql,q2,901,911,921, ""90r'91r’02r) .
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The actual risk for the rules {dc; (x, &)} is the risk of classifying a randomly selected
individual with feature U and is designated by

2 r

RA@ =) m)Y g f C (i, dc (x,&)) pic(x)dx. (8)
i=1 c=1 X

Definition 1. Risk regret (RR) for {d. (x,&)} is the difference between actual risk

R4 (@) and Bayes risk Rp, and expected regret risk (ERR) is the expectation of RR, i. e.

ERR = E7{R4(@)} — Rp, 9

where ET{R4 ()} denotes the expectation with respect to TS distribution.

Unfortunately the exact distributions of RR usually are hard to obtain. In those
cases, large sample approximations to and asymptotic expansions for the distributions
and expectations of RR are required.

The purpose of this paper is to find general expansions of ERR when maximum
likelihood estimates (MLE) of unknown parameters of the distributions of mixed feature
variables are used. These are used to evaluate the performance of sample-based CR and
to find the optimal training sample allocation.

This is an extension of the result of Ducinskas (1995), who presented the asymptotic
expansion of expected error regret in the situation when parameter vectors of classified
distributions a priori have all components different. T. C. Kao et al. (1991) had also
presented the asymptotic distribution of AER and asymptotic expansion for the expectation
of AER. However, only in the case of two normal populations with different means and
common covariance was considered.

The general asymptotic distribution of RR and asymptotic expansion of ERR in case
of several populations and continuous feature variables are derived in paper of Dudinskas
(1997). The asymptotic expansion of EER for mixed features with normaly distributed
continuous components was derived by Leung (1996).

2. Notations and the main result

Let V, be the vector partial differential operator given by
vl = 0 _8_ and |V,*= Zn: AN
“ 7 \dal”""" dan ¢ I =ACL

for any @ = (@, ..., a") € R".
Similarly, V2 denote the matrix second order differential operator

32
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Let Gc (x) = licpic (x) — lcpac (%) anq I = {x e RP: G, (x) =0}, and y, be the
Lebesque measure on I';. Assume that I} denotes the m x m Fisher information matrix
for ©;, i.e.

I: = Eic { Vo, In pic (x) Vo, In pic ()} (10)

where E;.{.} represents the expectation based on distribution with density function p;.(x)
(i=1,2,c=1,...,r). It is obvious that matrix I! can be expressed as a block matrix

. I I
Ir=\;% 7 , 11
¢ (IOic Iic ) (an

where
lic = Eic | Vo In pic () Y, In pic (0}

T = Eic [ Vag, In pic () Vo, In pic ()} (12)

lioe = Iiye = Eic {Va 0 pic ®) Vo Inpic 1)} G=12.e=1....n.  (13)

Suppose that S is the regularity assumptions for {pic (x)} and {g;c} ensuring the
following properties of the MLE: MLE & from T is consistent estimate and as M; — 00,
M;/M — r; > 0 (i =1, 2) satisfies

VM (@-a*) > N, 0,55, (14)
where
Jo = blockdiag(r11(q1), r21(q2), J1,..., J¢),
with 1.1 L L
g ' qir  qir qir .
1(q) = S R | (i=12)
dir gir """ Gir-1 qir
2 .
Yorigicly, nqicloic  r2qacloa
J.=1] =l , (c=1,...,n).
rqiclic 0
raqaclzc
Let the random variable U; = (Xf,Y;) has the probability mass function

[Te1 (Pic (x)gic)" G =1,2) and

2
Ve = lic (=1) (Voo Pic (®) = Toi I ' Vo, Pic(x)) (15

i=1
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THEOREM 1. Let the regularity assumption S hold and let R () be twice continuously

differentiable as function of a in some neighborhood Uy« and let F (U, U,) be real valued
function defined on R*P*") that satisfies

M(R4s — Rp) < F(Up, Uy), (16)

where E{F(U;,U)} < H,0 < H < 00.
Then the first order asymptotic expansion of the EER is

2 2
EER = B/2M + Y pi/2M; + ) ni/2M; + 0 (M) (17)
where ,
p=) [ VAV VG Wi dr (18)
c=1 r.
=Y [ Vo, pic () 17 V0 pic () 194G O e, (19)
c=1 I

) -1
A= (Z rigic (I§, — IOiCI,':lliOC)> , (20)

i=1

r
m=y 1% / Phe (%) (1 = gic) gic |V G (x0)| ™" dye. 1)
c=1 re

Proof. The assertion of the stated theorem directly follows from one of Theorem 5
of Dutinskas (1997), after inverting the Jo and collection the terms at M~' and {M; '}
(i=1,2).

Remark 1. Let mg = 0, i.e. all true values of components of unknown distribution
parameters are distinct. Then 8 = 0 in the first order asymptotic expansion of ERR defined
in (17).

Remark 2. If mg # 0, but 63, and {g;.} are known, then 8 =n =0 in (17).

Then training sample allocation problem is viewed as follows. For a fixed value of
M, let W; = M;/M denote the proportions of observations taken from ;. The design
problem is to chose a value W;* for W; that minimizes the AEER = ZLI pi/2M;.

The W} could be expressed explicitly (see Theorem 3 in Dutinskas (1995))

W;=1/(1+\/p_2/7). 22)
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Klasifikavimo rizika diskriminantinéje miSriy kintamyjy analizéje

K. Ducinskas

Nagrinéjamas atsitiktiniy vektoriy su tolydZiomis ir diskre€iomis komponetémis diskriminavimo uZdavinys.
Pateikti laukiamos rizikos pirmos eilés asimptotiniai skleidiniai klasifikavimo taisyklei, naudojan&iai
parametry maksimalaus tikétinumo jver¢ius pagal stratifikuotas mokymo imtis.



