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The risk of classification based on observations of anisotropic Gaussian
random fields

J. Saltyté, K. Duéinskas (KU)

1. Introduction

Let Z? be the 2-dimensional infinite integer lattice and let D denote a finite rectangular
lattice within Z2. Let r = (r', r?) be any point in D and assume that there are n points
in D so that we can write D = {r(i),i = 1,...,n}. Suppose that any point r € D can be
assigned to one of two classes 2y, £, with positive prior probabilities 7y, 3, respectively,
where m; +m = 1. The class of the point r is given by the random 2-dimensional vector
Y,T = (Y, Ya2,) of zero-one variables. The ith component of Y is defined to be one or zero
according as an class of point r is or not &; (i = 1,2). Then Y, ~ Mult,(1; (71, 72)).

Suppose a p-dimensional observation X, € X C R? can be made at each point r € D.
A decision is to be made as to which class the randomly chosen point r € D is assigned
on the basis of observed value of X,. The observed value of X, Y are denoted by x and
y, respectively.

Let X, = Z?:l Yi;ui + &, where uy, w2 € RP, pu # wuy and the noise & =
(¢}, ...,€F) are the realisations of the zero-mean stationary spatially correlated random
process.

The first assumption is that this process is Gaussian with locally spatial anisotropic
covariance. Hence, the common class-conditional covariance between any two observations
X, and X, at points r,s € D can be factored as cov(X,, X;) = p(r — )X, (r # s),
where p(-) is the anisotropic correlation function, p(0) =1 and £ = cov (&, &) (k,] =

I,...,p).

Let the set of D points in vicinity of r denoted as N, = {r(1), ..., r(m)} then represents
the neighbourhood of any point r € D. Let Xy, contains the observations on these points
in the prescribed neighbourhood of point r, that is Xy, = (X7}, ..., X[ )7

The second assumption about the joint distribution of Xy, assumes local spatial con-
tinuity; that is, if ¥;; = 1, then Y;,jy = 1 with the probability close to 1, i = 1,2,
j = 1,...,m. Note that this assumption will hold within the boundaries for each class
but will not be true near the class boundaries. Its practical implication will not be discussed
here.

Then the mean vector for X;* = (X7, X,T,I)T is

ui =E{X} /Y =1} Z lpn@wm (=12), n

where 1,4, is the (m + 1)-dimensional vector of ones, and ® is the Kronecker delta
(Cressie, 1993; Haslet & Horgan, 1987). The covariance matrix of X, given that r
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belongs to ; is
Tt=CQ®rL, 2

where C is the anisotropic spatial correlation matrix of order (m + 1) x (m + 1), whose
(k, Dth elementis p (r k—1)—r (= 1)) (k,I=1,...,m+1) and ri) = r.

Presmoothing of the data is accomplished by implementing the assignment of point
r on the basis of the value x;" of the augmented vector X; (Cressie, 1993). Under the
assumptions above, the ith class-conditional distribution of X;' is (m + 1) x p-variate
normal with mean (1) and covariance matrix (2).

Let pi(x;) and p;'(x;") denote the probability densities of x, and x}, respectively,
when Y;, = i. Let d(-) denotes a classification rule, where d(x,) = i implies that point r
with observation X, = x, is to be assigned to class Q; (i = 1, 2). Similarly let d*(x}}) is
classification rule based on augmented observation X;" = x.

The losses of classification when a point from class €; is allocated to class Q; are
denoted by L(i, j). Then the risks of classification based on rules d(-) and d*(-) can be
expressed as

i=1

2
RAO) =Y [ LG.dw)pi ) dx
= x

and

2
R*=R(d} () =) m / L(i,d* (x)) p} (x)dx,
i=1

Xxm+1

respectively. Then Bayes classification rules (BCR) dp (-) and dj (-) minimising R (d (-))
and R, respectively, are defined as

dp (x) = arg max ; pi(x), di(x*) = arg max Lipt(xh),

where l; = m;(L(3 —i,i) = L(i,i)), i =1,2.

2. The risk of the classification

Consider the special case of anisotropic spatial correlation function

p(h;t,a):exp(—a,/tzh% -@), 3)

where hT = (hy, h3),t >0, # 1, @ > 0. It is obvious that in the case ¢ = 1 it becomes
isotropic correlation function.

Anisotropic spatial correlation function defined in (3) is applicable to the situation,
when the behavior of the process X, in the N-S direction is different from that in W-E
direction, i.e. when t < 1, the correlation between observations in the N-S direction
decreases faster than that in the W-E direction, whereas in the case of 1 > 1 decreasing
of correlation in the W-E direction is faster than in the direction N-S.
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Consider three situations based on the positions of classified point r in D for the
first-order neighbourhood scheme (Duéinskas, Saltyte, 1998).

Situation A. The point r and all first-order neighbours are inside D.

Situation B. The point r is on the boundary of D and three first-order neighbours are
inside D.

Situation C. The point r is at the comer of D and two first-order neighbours are
inside D.

Assume, that X, X5, X} and R{,, Rjz, Rgc denote vectors of augmented obser-
vations and Bayes classification risks for above situations A, B and C, respectively. Let

A% = (u — uz)T T ! (u1 — wy) is the square of Mahalanobis distance and y; = In (%)

THEOREM 1. Let d; (X iy A) is used for the classification of r € D in the situation A.
Then Rj, is equal

2
. ; '-AAA Y1
RZ, =§(mL(l, H-(-1) M’((“) 2 AAA))’

where
AL = (4eUHD) _ o2t D) 4 o2 ge(-a(“ﬁ/m)) + ge(-am + (220
+ 4e(1+20) ge(~+(+V7TH)) 5 | got-o) _ golatrn)
1 ae(FVP) | gotaygt2atit) - -2a0
et 4 48(—2"‘@ _ ge(ma(r+/i2r141)) 1.

Proof . Square of Mahalanobis distance between classes 2; and §2; based on augmented
observation X}, is

(A1) = (ut —ud)" (Z) 7 (wf — 1) = (s @AW" (CL R E)™ (15 ® Aw),
where spatial correlation matrix C is

1 el-on e e—at) e

1 e(-a\/t2+l ' e(_za,) e(—a\/r2+l ,
CI = 1 e(—av 241 » e(_za)
1 e(_am

1

Using the property (C} ® £)™' = (C})”™' ® ™! and taking an inverse of C;} the proof
of the theorem is completed.
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THEOREM 2. Let df (X};) and dg (X;"C) are used for the classification of r € D in
the situations B and C, respectively. Then R{g and R{fc are

R —i(yz-L(i 1)-(-1)"1-4)(—1 iAsA  n
03—i=1 iL (1, i P ( )—2—--'-1\19A ),
2

Rz =Y (mL G, 1) = (-1 ;@ ((—”i ‘ASA - A}:A)) ’

i=1

where
A23 = 2(e¥+2) 4 e(_za v 'ZH) + 2e(‘a V 'ZH) —2e(C+D) 4 op(-e) _ 2e<—a(l+ v '2“))
PP G + e Ly (20 4 2t | oo (-2

_4e(—a(t+ t2+1+l)) -1 +e(_2w))
and
AL = (=3 + e(—za Vi+1) +2¢0 — 2e(_a(l+ Vi) _ 2e(_a(‘+ /i2+1))
+ 28(_a) + e(_za) + 2e(—a\/(2+l )

_ 2e(‘°‘(‘+1» + e(—ZaI))/(_I + e(—Za\/rzﬂ)
+ e("2¢¥!) _ 2e(—a(l+\/ 12+1+|)) + e(_za))‘

Proof. The proof of theorem is similar to the proof of Theorem 1 only replacing C}
by

1 el-on e~ e(—®)
—ar/12 ) /) )
ct— 1 e(a 1441 e(ar-H
B 1 e~
1
an
d 1 el-en e

ct= 1 e(—a\/12+1)

1

Values of A%, A}, A% derived in Theorem 1 and Theorem 2 are presented in Table 1
and Table 2 for r = 0.5 and ¢ = 2, respectively.

From Tables 1 and 2 it can be compared the risk of classification for different types of
data augmentation and different cases of anisotropy.
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Table 1. Values of A,24 , A% , A% for p (h;0.5,a) =exp(— a,/0.25h“1’ +h§).

o A% A% A%

1 2,124911 2,020455 1,62489
2 3,186919 2,852486 2,154622
3 3,939158 3,37405 2,504078
4 4,390459 3,659138 2,710289
5 4,646582 3,809888 2,829076
6 4,792082 3,891093 2,89812
7 4,876226 3,936291 2,938833
8 4,925738 3,962198 2,963113
9 4,955232 3,977369 2,977698
10 4,972939 3,986379 2,986496

Table 2. Values of AL, A%, AZ for p(h: 2,a) = exp (- a\/4h? + h3).

o A% A% AL

1 3,186919 2,550691 2,154622
2 4,390459 3,456671 2,710289
3 4,792082 3,801187 2,89812
4 4,925738 3,926896 2,963113
5 4,972939 3,973084 2,986496
6 4,990073 3,990091 2,99504
7 4,996351 3,996353 2,998176
8 4,998658 3,998658 2,999329
9 4,999506 3,999506 2,999753
10 4,999818 3,999818 2,999909
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Anizotropiniy atsitiktiniy Gauso lauky stebéjimy klasifikavimo rizika
J. Saltyte, K. Ducinskas

Straipsnyje nagrinéjamas baigtinés dvimatés gardelés vidiniy bei ribiniy talky klasifikavimo uZdavinys
pagal atsitiktiniy lokaliai tolydZiy Gauso lauky su lokaliai anizotropine kovariacija realizacijas. I¥vestos
analitinés formulés Siyy tasky klasifikavimo rizikai skaiCiuoti pirmos eilés kaimyny schemoje.



