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Simple proof of the second order renewal theorem

A. Baltrinas (MII)

Let X1, X5, ... be i.i.d. possitive random variables with common distribution F. We
assume, throughout this paper, that F is non-singular. Suppose that0 < a~! = EX; < oo.
Let So =0; S, = X1 + -+ X,, n > 0, be so-called random walk. One of the central
objects in renewal theory is the family A'(r) = inf{n > 1: Sn > t}, t >0, of first passage
times for S,,n > 0. The expectation U(t) = EN(t),t > 0, is the so-called renewal
function.

A number of authors have investigated the asymptotic behaviour of U ) ast »> o
(see [1] and references contained therein). Sufficiently good estimates of hight order U (¢)
asymptotics are hardly obtainable. In this paper, we present a simple proof of the second
order renewal theorem, moreover, here obtained the estimates are valid for a large class
of subexponential distributions.

Definition 1. The distribution function F belongs to the subexponential class S, if
its tail F := 1 — F satisfies lim,_, oo F * F (t1)/F(t) = 2, where * denotes the Stieltjes
convolution of F with itself.

By F we denote a set of all positive and measurable functions, defined on [0, 00). For
any two functions 4 and g of F we define their Lebesque convolution » & g by

!

hdg(t) = /h(t —u)gu)du, t>=0.
0

In [2] the class OA of functions g € F was defined.
We say that g € OA if

t
g ®g(t) = 0(l)g(r) f 2()du.
0

Definition 2. he distribution function F € S belongs to the class OSD, if F € OA.
Let us define the integrated tail distribution F; of F, i.e.,

t

Fi(1) =a/ F(udu, t>0.
0

Then the next result is true.
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THEOREM. If F| € OSD, then as t - oo

t t

U(t)—at—a/f'l(u)duz 0(1)?,(:)/F,(u)du. 1)
0

0

Proof. Let us define Z(t) = U(t) —at, t > 0. From Theorem 3.1.11 in [1] it follows
that if F; € OSD, then

A= sup|z@ + 1)-2(:)|/F.(:+1) < o0, @)
t20

We have

t !

Ut —at —a f Fiwydu = Fu()Z() +a / (200 -z - ) Fopay. @

0 0

First of all we choose a positive integer N large enough and rewrite the term a f(; (Z(t) —
Z(t — y))F(y)dy as I + 11, where

t—N
I=a f (20 - 2t - ) Fay,

0
t
II=a f (Z(t) -z - y))F(y)dy.
t—N
As to 11, we have that IT = O(1)Z(¢) F(t) = o(1)Z(t) Fi(¢). Next consider I. We have
that fory: k <y <k+1

ZW)—-Z—-y)=Zt) -2 —k)+Z@t—-k)—Z(t—y)

k—1
=Z(Z(t—r)—Z(t—r—1))+Z(t—k)—Z(t—y).

r=0

From (2) it follows that

P !
IZ(t) —-Z@ —k)| < AZF.(: -r) <A / Fi(w)du.
—k

r=0 '
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Using part (b) of Theorem 3.1.11 in [1] we conclude that for k < ¢ — N there exists a

constant C such that
1—k

Z4—k) = Z(t — y) < CFi(t — k) (y — k) < C / Fi(u)du.
=y

Hence

t t t t
I=o0) / ( / Fiwdu) F(ydy = 0(1) / / Fi(w)dud F (v)
0 t

-y 0 t—y
!

=O0()F\(r) f Fiw)du+ O()F, ® F\(1).
0

Since F; € OSD, we obtain that [ = O()F(2) fot Fi(u)du. Now combine this estimate
with the estimate for /1. It readily follows that

t t
- -1 [ - -
U(t)—at —a(l - Fl(t)) /Fl(u)du = O(I)Fl(t)/ Fi(u)du.

0 0
This completes the proof of the result.

Remark. As follows from Theorem 1.2 in [3] we have that estimate (1) is optimal.

COROLLARY. IfEX ,2 < 00, then under the assumptions of the Theorem it follows that
t
U(t)—at - a/ Fi(w)du = O(1)F, (1)

0
ast — 0o.
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Paprastas antros eilés atstatymo teoremos jrodymas
A. Baltrinas

Darbe pateikiamas paprastas antros eilées atstatymo teoremos irodymas platiai subeksponentiniy skirstiniy
klasei.



