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Abstract. We transform a double integral into a second-order initial value problem, which
we solve using Euler’s method and Richardson extrapolation. For an example we consider, we
achieve accuracy close to machine precision (∼ 10−13). We find that the algorithm is capable
of determining the error curve for an arbitrary cubature formula, and we use this feature to
determine the error curve for a Simpson cubature rule. We also provide a generalization of
the method to the case of nonlinear limits in the outer integral.
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Introduction

Many techniques for evaluating multiple integrals have been developed (see, for ex-
ample, [24, 17, 8, 26, 21, 6, 3, 4, 5, 2, 13, 12, 7, 11, 10, 15, 9, 1, 14, 16, 22, 23, 25,
18, 20, 19, 27]). In this paper, we add to this pool of knowledge: we transform a
double integral into a pure quadrature second-order initial value problem, which we
solve using Euler’s method and Richardson extrapolation (at the time of writing, we
have not found evidence of this technique elsewhere). We will derive constraints on
the integrand via Leibniz differentiation and Lipschitz continuity. We will show how
the algorithm can be used to determine the error curve of an arbitrary cubature rule,
and we will offer a generalization to the case of nonlinear limits in the outer integral.
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Relevant Concepts

Here, we present concepts and notation relevant to the study.

• Let f(x, t) be a real-valued function, i.e. f : R2 → R, that is Riemann integrable
in both variables. We will assume that f is suitably smooth so that all relevant
derivatives in our analysis exist, in particular ∂f/∂x.

• Define

C(x) ≡
∫ X

x0

∫ t1(x)

t0(x)

f(x, t)dtdx (1)

as the double integral of interest, noting that the limits of the inner integral
may be functions of x. We necessarily require t0(x) > −∞, t1(x) < ∞ for
x ∈ [x0, X].

• Let M denote the exact numerical value of some mathematical object, such as
an integral. Let N(h) denote a numerical approximation to M that is dependent
on an adjustable parameter h. Assume that

N(h) = M +K1(x)h+K2(x)h
2 +K3(x)h

3 +K4(x)h
4 + . . . (2)

In other words, the approximation error in N(h) is a power series in h. Richard-
son extrapolation is a process by which values of N(h), for differing values of h,
can be combined linearly to yield approximations that are of higher order than
the original approximation N(h). Details of this procedure, relevant to the
current paper, are provided in the Appendix.

• The well-known Euler’s method is a first-order Runge-Kutta method for numer-
ically solving an initial value problem, and it has an approximation error of the
form in (2).

• The following thorem will be used later:

Theorem 1 [Leibniz]. Let the function f(x, t) be such that f(x, t) and ∂f(x,t)
∂x are

continuous in x and t in some region of the xt-plane, which includes t0(x) ⩽ t ⩽ t1(x),
x0 ⩽ x ⩽ X. Additionally, assume that t0(x) and t1(x) and their first derivatives are
continuous on [x0, X]. Then, for x ∈ [x0, X],

d

dx

( t1(x)∫
t0(x)

f(x, t)dtdx

)
= f(x, t1(x))

dt1(x)

dx
− f(x, t0(x))

dt0(x)

dx
+

∫ t1(x)

t0(x)

∂f(x, t)

∂x
dtdx.
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Euler/Richardson evaluation of a double integral 41

Theory

Assuming the conditions of Theorem 1 are satisfied, differentiating (1) with respect
to x gives

C ′(x) =

t1(x)∫
t0(x)

f(x, t)dt,

C ′′(x) = f
(
x, t1(x)

)
t′1(x)− f

(
x, t0(x)

)
t′0(x) +

t1(x)∫
t0(x)

∂f(x, t)

∂x
dt

via the Leibniz rule (see Theorem 1). Clearly, this result implies the integrability of
∂f(x,t)

∂x with respect to t, on [t0(x), t1(x)] for x ∈ [x0, X].
Hence, we have

C ′ = Z,

Z ′ = f(x, t1(x))t
′
1(x)− f(x, t0(x))t

′
0(x) +

t1(x)∫
t0(x)

∂f(x, t)

∂x
dt ≡ g(x) (3)

with initial values

C(x0) =

x0∫
x0

t1(x)∫
t0(x)

f(x, t)dtdx = 0,

Z(x0) = C ′(x0) =

t1(x0)∫
t0(x0)

f(x0, t)dt.

Of course, this is a second-order system, compactly expressed as[
C ′

Z ′

]
=

[
Z

g(x)

]
. (4)

We define the nodes {x0 < x1 < x2 < · · · < xi < · · · < xn < X}, where we treat
the upper limit X as the final node in the set. The nodes {x0, x1, x2, . . . , xi, . . . , xn}
are uniformly spaced; the spacing is denoted by the stepsize h. The node xn is
chosen such that X − xn ⩽ h. Also, we define Ci ≡ C(xi), Zi ≡ Z(xi) and so on.
Consequently, Euler’s Method applied to this system can be written in the form[

Ci+1

Zi+1

]
=

[
Ci

Zi

]
+ h

[
Zi

g(xi)

]
.

Solving this system numerically yields the values C(xi) and, of course, C(X).
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If we demand Lipschitz continuity in x for the RHS of (4), we must have that the
derivatives

∂Z

∂x
= g(x),

∂g

∂x
=

∂

∂x

(
f(x, t1(x))t

′
1(x)

)
− ∂

∂x

(
f(x, t0(x))t

′
0(x)

)
+

∂

∂x

( t1(x)∫
t0(x)

∂f(x, t)

∂x
dt

)
= fx

(
x, t1(x)

)
t′1(x) + f

(
x, t1(x)

)
t′′1(x)− fx(x, t0(x))t

′
0(x)− f(x, t0(x))t

′′
0(x)

+
∂f(x, t1(x))

∂x
t′1(x)−

∂f(x, t0(x))

∂x
t′0(x) +

t1(x)∫
t0(x)

∂2f(x, t)

∂x2
dt

are Lipschitz continuous on [x0, X]. Also, we require the integrability of ∂2f(x,t)
∂x2 with

respect to t, on [t0(x), t1(x)] for x ∈ [x0, X]. These conditions, together with those
pertaining to Leibniz differentiation of (1), serve to characterise the problem (1).

Numerical Example

Consider

C(x) =

∫ 5

1

∫ x2+1

x/5

sin(xt)dtdx (5)

which gives, with f(x, t) = sin(xt),

Z ′ = 2x sin(x3 + x)−
sin(x

2

5 )

5
+

∫ x2+1

x/5

t cos tdt. (6)

The one-dimensional integral in (6) is evaluated using composite Gaussian quadrature
[19] to a precision of 10−15, although any suitably accurate technique can be used.

The initial values are

C(1) = 0,

Z(1) =

∫ 2

1/5

sin tdt = 1.396213414388384.

Clearly, we also have x0 = 1, X = 5, t0(x) = x/5 and t1(x) = x2 + 1.

Error control

It is possible to choose the stepsize h so as to achieve a desired level of accuracy in
the computation of C(x). Terminology and notation used in this section is described
in the Appendix, and the reader is thereto referred.

With a moderately small value of h (we used h = 0.01 in our example), we use
Euler’s method to obtain solutions of (4), at the nodes {x0 = 1, x1, x2, . . . , xi, . . . ,
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Euler/Richardson evaluation of a double integral 43

X = 5}, for the various stepsizes required to construct M4(x, h) and M5(x, h) via
Richardson extrapolation. We then perform the computations

M4(xi, h)−M5(xi, h) = K̃4(xi)h
4 −O(h5)

≈ K̃4(xi)h
4

⇒ K̃4(xi) =
M4(xi, h)−M5(xi, h)

h4

at each of the nodes {x0 = 1, x1, x2, . . . , xi, . . . , X = 5}. Hence, we have the error
coefficient K̃4 at each node. We note that, due to the linear combination necessary to
construct M4(x, h), K̃4 is not necessarily equal to K4. In fact, we have K4 = 64K̃4.

The sequence of calculations below then allows a new stepsize to be found, con-
sistent with a user-defined tolerance ε.

h∗ =

(
ε

maxxi |K̃4(xi)|

) 1
4

,

n =

⌈
x− x0

h∗

⌉
,

h =
x− x0

n
.

The Euler/Richardson algorithm is then repeated using this new stepsize, ultimately
leading to a new M4(xi, h) and, in particular, M4(5, h) ≈ C(5).

Results

Applying the algorithm to (5) gives the stepsizes needed for various tolerances, shown
in Table 1.

Table 1. Tolerances and corresponding stepsizes
for evaluating the double integral in (5).

ε 10−14 10−12 10−10

h 2× 10−4 6.3× 10−4 2× 10−3

ε 10−8 10−6 10−4

h 6.3× 10−3 2× 10−2 6.3× 10−2

In Fig. 1 we show C(x) obtained from M4(xi, h) with h = 6.3 × 10−4. In Fig. 2,
we show the associated coefficients K1(x),K2(x),K3(x) and K4(x). In Fig. 3, we
show error curves for C(x) obtained from both M2(xi, h) and M4(xi, h), again with
h = 6.3× 10−4. Clearly, M4(xi, h) appears to achieve a tolerance of ∼ 10−12 over the
entire interval.

Of course, the original objective was to determine C(5), and so

C(5) ≈ M4(5, 6.3× 10−4) = 0.630635228375177

which is within 8.3× 10−13 of the exact value.
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Fig. 1. C(x) obtained from M4(xi, h) with h = 6.3× 10−4.

Possible applications

Apart from the obvious task of determining C(x), we can also use this algorithm to
find the error term for a given cubature rule Q(x). If we include Q(x) in (1), we have∫ X

x0

∫ t1(x)

t0(x)

f(x, t)dtdx = Q(x) + C(x)

which yields the system

C ′ = Z

Z ′ = f(x, t1(x))t
′
1(x)− f(x, t0(x))t

′
0(x) +

∫ t1(x)

t0(x)

∂f(x, t)

∂x
dt−Q′′(x) ≡ g(x),

with initial values

C(x0) =

∫ x0

x0

∫ t1(x)

t0(x)

f(x, t)dtdx−Q(x0) = −Q(x0),

Z(x0) = C ′(x0) =

∫ t1(x0)

t0(x0)

f(x0, t)dt−Q′(x0).

In this case, C(x) now plays the role of an error term or a correction term (earlier,
we effectively had Q(x) = 0).

For example, applying Simpson’s Rule to our example yields the cubature expres-
sion Q(x) shown in the Appendix. Then, applying our algorithm with h = 4× 10−3,
we find the curves Q(x) and C(x) shown in Fig. 4. Comparing Q(x) to the curve in
Fig. 1, we see that the cubature rule is very inaccurate. However, when the correction
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Fig. 2. K1(x),K2(x),K3(x) and K4(x).

Fig. 3. Error curves for C(x) obtained from both M2(xi, h) and M4(xi, h), with h = 6.3× 10−4.
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Fig. 4. Q(x) and C(x) for the case of Simpson’s Rule.

term C(x) is added to Q(x), the result differs from the true value by ∼ 2× 10−6 (for
M4) and ∼ 5× 10−9 (for M5) at x = 5, and these errors can, of course, be made even
smaller by using a smaller stepsize.

Conclusion

We have described a technique by which the task of determining a double integral
can be presented as the task of solving a second-order initial value problem. We use
Euler’s method for this purpose, combined with Richardson extrapolation to yield very
accurate results. Indeed, we have achieved accuracy close to machine precision for
the numerical example considered here. Moreover, our algorithm lends itself to error
control - the stepsize h needed for a desired accuracy can be estimated. Additionally,
we have shown how the algorithm can be adapted to yield the error curve for a
cubature rule, if such a rule is imposed on the problem.

Future work could address the matter of relative error control, higher-dimensional
cubature and the possibility of developing custom Runge-Kutta methods of high order
that are able to incorporate the integral term that appears in (3). If the interval of
integration is relatively large, it may be wise to divide said interval into subintervals
and to apply the algorithm on each subinterval, adding the results in an appropriate
manner. Whether or not this is necessary or advantageous needs to investigated. The
general case where the limits in the outer integral are arbitrary functions of x should
also be considered (we make some comments in this regard in the Appendix).

Lastly, we note that the physical time taken on our platform [27] to compute C(x)
– for ∼ 6100 nodes – was roughly 30s. To compute the same curve using the symbolic
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Euler/Richardson evaluation of a double integral 47

int(f,a,x) function in MatLab took as long as an hour. Future research might study
this aspect of efficiency in more detail.

Appendix

Richardson extrapolation

We define

N0(x, h) ≡ N(x, h) = N

(
x,

h

20

)
= M(x) +K1(x)h+K2(x)h

2

+K3(x)h
3 +K4(x)h

4 +K5(x)h
5 + . . .

N1(x, h) ≡ N

(
x,

h

2

)
= N

(
x,

h

21

)
=M(x) +K1(x)

h

2
+K2(x)

h2

4

+K3(x)
h3

8
+K4(x)

h4

16
+K5(x)

h5

32
+ . . . .

and similarly for

N2(x, h) ≡ N

(
x,

h

22

)
= N

(
x,

h

4

)
,

N3(x, h) ≡ N

(
x,

h

23

)
= N

(
x,

h

8

)
,

N4(x, h) ≡ N

(
x,

h

24

)
= N

(
x,

h

16

)
,

N5(x, h) ≡ N

(
x,

h

25

)
= N

(
x,

h

32

)
.

For example, to construct a fifth-order method, we seek α0, . . . , α4 such that

M5(x, h) ≡
4∑

k=0

αkNk(x, h) = M(x) +O(h5).

It can be shown that we must solve the linear system

1 1 1 1 1

1 1
2

1
4

1
8

1
16

1 1
4

1
16

1
64

1
256

1 1
8

1
64

1
512

1
4096

1 1
16

1
256

1
4096

1
65536





α0

α1

α2

α3

α4


=



1

0

0

0

0


,
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which gives 

α0

α1

α2

α3

α4


=



1
315

− 2
21

8
9

− 64
21

1024
315


.

In general, we have, for an mth order method

Mm(x, h) ≡
m−1∑
k=0

αkNk(x, h) = M(x) +O(hm),

A1,1 · · · · · · · · · A1,m

...
. . .

...
... Ai,j

...
...

. . .
...

Am,1 · · · · · · · · · Am,m





α0

...

...

...

αm−1


=



1

0

...

...

0


where Ai,j =

(
1

2i−1

)j−1

.

Using this, we can find coefficients for 2nd-, 3rd- and 4th-order methods

 α0

α1

 =

 −1

2

 ,


α0

α1

α2

 =


1
3

−2

8
3

 ,



α0

α1

α2

α3


=



− 1
21

2
3

− 8
3

64
21


and a 6th-order method 

α0

α1

α2

α3

α4

α5


=



− 1
9765

2
315

− 8
63

64
63

− 1024
315

32768
9765


.
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Simpson cubature

A cubature expression, in terms of x, obtained by applying Simpson’s Rule to (5), is

Q(x) =
(x− 1)

360

(
18 sin(2) + 18 sin

(
1

5

)
+ 72 sin

(
11

10

))

+
(x− 1)

36
(x2 − x

5
+ 1)

 sin(x(x2 + 1)) + sin
(
x2

5

)
+ 4 sin

(
x
(
x2

2 + x
10 + 1

2

))


+
(x− 1)

36

((
x

2
+

1

2

)2

− x

10
+

9

10

) 
16 sin

((
x
2 + 1

2

)(
x
20 +

( x
2+

1
2 )

2

2 + 11
20

))
+ 4 sin

((
x
2 + 1

2

)(
x
10 + 1

10

))
+ 4 sin

((
x
2 + 1

2

)((
x
2 + 1

2

)2
+ 1)

)
 .

This expression was obtained using symbolic software [27], and includes the effect
of the variable limits in the inner integral.

General limits

Consider the more general case

C(x) ≡
∫ b(x)

a(x)

∫ t1(x)

t0(x)

f(x, t)dtdx ≡
∫ b(x)

a(x)

I(x)dx,

where the limits in the outer integral are both functions of x, not necessarily linear,
and we have implicitly defined I(x).

We find, dropping the argument of a(x) and b(x) for notational convenience,

C ′(x) = I
(
b(x)

)
b′(x)− I

(
a(x)

)
a′(x),

C ′′(x) = I
(
b(x)

)
b′′(x)− I

(
a(x)

)
a′′(x) +

dI(b)

db
b′(x)b′(x)− dI(a)

da
a′(x)a′(x). (7)

Now,

dI(b)

db
=

d

db

(∫ t1(b)

t0(b)

f(b, t)dt

)
= f

(
b, t1(b)

)dt1(b)
db

− f
(
b, t0(b)

)dt0(b)
db

+

∫ t1(b)

t0(b)

∂f(b, t)

∂b
dt

and

dI(a)

da
=

d

da

(∫ t1(a)

t0(a)

f(a, t)dt

)
= f

(
a, t1(a)

)dt1(a)
da

− f
(
a, t0(a)

)dt0(a)
da

+

∫ t1(a)

t0(a)

∂f(a, t)

∂a
dt.
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There are two approaches we may take to solving (7). The first is the case where
a specific value of x is given, say x = p. We then simply use p to determine the
numerical values for the outer limits, giving

C(x) ≡
∫ b(p)

a(p)

∫ t1(x)

t0(x)

f(x, t)dtdx.

This has the same form as (5), and may be handled in the same way. The second
case is when we desire C(x) over an interval, say [x0, xn]. In this case, we solve the
system

C ′ = Z,

Z ′ = I(b(x))b′′(x)− I(a(x))a′′(x) +
dI(b)

db
b′(x)b′(x)− dI(a)

da
a′(x)a′(x)

with initial values

C(x0) =

∫ b(x0)

a(x0)

I(x0)dx = (b(x0)− a(x0))I(x0),

Z(x0) = I(b(x0))b
′(x0)− I(a(x0))a

′(x0).

We will not investigate this line of research any further here, preferring to consider it
in future work.

Nevertheless, for the sake of completeness: in our earlier example we had

a(x) = x0 = const,
b(x) = x

so that

a′ = a′′ = 0,

b′ = 1, b′′ = 0,

t1(b) = t1(x), t0(b) = t0(x),

t1(a) = t1(x), t0(a) = t0(x).

Substituting these into (7) gives

C ′(x) = I(b(x))b′(x)− I(a(x))a′(x) = I(x) =

∫ t1(x)

t0(x)

f(x, t)dt,

C ′′(x) = 0− 0 +
dI(x)

dx
(1)(1)− 0

= f(x, t1(x))
dt1(x)

dx
− f

(
x, t0(x)

)dt0(x)
dx

+

∫ t1(x)

t0(x)

∂f(x, t)

∂x
dt,

as expected.
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REZIUMĖ

Dvigubo integralo įvertinimas naudojant Eilerio metodą ir Richardsono
ekstrapoliaciją

J.S.C. Prentice
Transformuojame dvigubą integralą į antros eilės pradinės reikšmės uždavinį, kurį sprendžiame nau-
dodami Eilerio metodą ir Richardsono ekstrapoliaciją. Pavyzdžiui, mes norime pasiekti tikslumą, ar-
timą mašininiam tikslumui (∼ 10−13). Pastebime, kad algoritmas yra pajėgus nustatyti kubatūrinės
formulės klaidos kreivę, ir mes naudojame šią funkciją nustatant Simpsono kubatūrinės formulės
klaidos kreivę. Taip pat pateikiame metodo apibendrinimą išorinio integralo netiesinių rėžių atveju.
Raktiniai žodžiai : kubatūra; dvigubas integralas; Euleris; Richardsono ekstrapoliacija; klaida
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