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Sums of digits obey the Strassen law

E. Manstavicius* (VU)

This remark continues the author’s investigation [7]. To start with, we note that
No = NU{0} is free additive semigroup which basis is an arbitrary numeration system
U ={u;j}, j 20, uj € N. Thus each m € No has the unique finite expression

m=_ dj(mu )

j20

with d;(m) € Nyo. As in [6], we confine ourselves to the mixed radix numeration
system (Cantor system) U which (see [3] for more information) is determined by
some sequence b; > 2, j > 1 of natural numbers via uo = 1, u; = bjuj_; when
j = 1. As it is proved in [3], the representation (1) of m € Np is unique if
0 <dj(m) < bj11, j = 0. Denote

se(m) =Y di(m),  sn(m) = s(m).
0<j<k
Let
1
Vp(A) :=—-#0<m <n, me A}
n
be the probability measure defined on the subsets A of Ng. Probabilistic properties of
the sums of digits are fairly interesting. We name few of them in the case of g-adic

numeration system, e.g. when b; = g > 2. H. Delange [1] obtained the following
asymptotical formula for the mean value

1 n—1 _
—Zs(m)=1——]N+F(N). =l°ﬂ,
n = 2 logg

where F is a suitable continuous and nowhere differentiable function of period 1.
Exact bounds for the error F(N) had been given in [2]. Denote

Dn(’) =

(sN,(m) - (iﬂ—'), A= (g% - D/12, t €0, 1].

I
AN 2

We proved in [6] that the probability measure v, - D, ! defined on the Borel o -algebra
of the space D = D[0, 1] weakly converges to the Wiener measure. In this case we
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may assume that D is endowed with the topology defined by the supremum metric
denoted in the sequel by p. We have from this result

v,,(max s (m) — (g~ ])k' < xA\/ﬁ)
k<N 2

4 (—1)k ox w22k + 1)?
w4 2k+l p 8x2 ’

Even the last relation gives little information about the bounds of the sequence sy (m)
when k =— oo for “almost all m”. Thus, the purpose of the present investigation is
to fill up this gap by giving the exact order of growth for s;(m). We will extend this
problem to a functional one and establish an analog of the Strassen functional law of
iterated logarithm. In proving that we will use the author’s approach [7] having its
origin in the Kubilius’ study [4]. The ideas of the paper [6] dealing with the strong
invariance principle for additive arithmetic functions defined on the semigroup N will
be also exploited.

Now denote
n =:ayuy +---+ ayu, + ap, N = N(n) = max{k : uy < n};
dj(m) = dj(m) — (bj+1 — 1)/2, = 1 — D/12
for0< j<N-—1and

dy(m) =dy(m) —an/2, o} =ay(any +2)/12.

Let
2

Bi=ol+---+o02,,  Bk)=2BLLB;, O0<k<N

where Lu = log max{u, e} and

1 _
S(m, 1) = 0] ;d,(m), k<N, tel01]

B~<lBk

Let Si(m, t) be the piecewise linear curve in the coordinate plane joining the points
0,0),...,(B;/Bx, Sx(m, Bi/By)),l =0, 1, ..., k. We recall that the Strassen set K
is comprised by absolutely continuous functions g such that g(0) = 0 and

fg(t)

0

For the processes X; in D defined on some sequence of probability spaces
{2, Fn, Pn}, say, for k < N = N(n), we denote

Xy =K (P, —as.) (2)
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if the following two relations hold

im li Ky>e)=0
lim llmsupP,,(kaa(pr(Xk, ) s)

X—>00 00 <k<

and
lim liminf P,,( min p(X, X) < e) =1
X

X—>00 n—00 <k<N

for each ¢ > 0 and each X € K. Here as usually, p(X, A) =inf{p(X,Y): Y € A}.
The measurability of this distance will be provided by the very construction of the
probability spaces. If P, = P does not depend on n, our notion (2) coincides with
the Strassen’s invariance priciple, e.g., it means that the sequence X, is relatively
compact ant K is the set of its partial limits P almost surely.

THEOREM. Let Sy be either of Sy or :Si and

bj=o (W) 3

as j - oo. Then
Si(m,) =K  (v,—a.s). 4)

Applying suitable continuous functionals in the relation (4), as in [6], we obtain

COROLLARY. If the condition (3) of Theorem is satisfied, then we have v,-a.s.:
D) Si0m, 1) = [—1, 1];

i) (Se(m, 1/2), S(m, 1)) = £ := {(u,v) 1 u? + (v —u)* < 1/2};

i) Se(m, 1/2) = [-+/2/2, V2/2);

1v) if ki is the subsequence for which Sy, (m,1/2) — \/5/2, then Sy, (m,.) — g,
where
=12 Fo<i<l
V2/2 if 1/2<e <L

V) if ki is the subsequence for which Sy (m,1/2) — 1/2 and Sy, (m,1) — 0,
then Sy, (m,t) — g3, where

B if 0<1<1/2,
g2(t)"{l—t if12<1<1.

Thus in the case of g-adic numeration system, we have

Isk(m) — (g — Dk/2] < (1 + &)AV2kLLk
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“for almost all” m when x < k < N with sufficiently large x and n. This estimate is
sharp in the sense that € can not be changed by —e. In order to improve the remainder

term £+/2kL L k, one had to apply the Feller’s type law of iterated logarithm and the
approach of the present remark. Going along these lines one can obtain the estimate

3 172
Isg(m) — (g — Dk/2| < k(Zk(sz + §L3k +Lsk+---+ (14 e)L,,k))

valid for each p > 4 and ¢ > 0. Here Ljk = L(L;_k).

Proof of Theorem. The main auxilliary results have been obtained by the author
in [6]. To quote them, we need some notation. Let {/;} and {J;} be arbitrary
systems of subsets of the sets {0,1,...,r} and {0,1,..., N} respectively, where
1<l<p,pzlandl <r<N-—1. Put

simy=Y_di(m), S, =) &,

jel Jjel

where £, 0 < j < N are independent random variables (i.r.vs) defined on some
probability space {2, F, P} by

P(§ =d)=1/bj4, 0<d <bjyy
for0< j<N-1and
P(ey =d)=1/(an + 1), 0<d<ay.
Put & =& —E&, 0< j < N.

LEMMA. There exist a probability space and the i.r.vs such that

20u,
va((s5,(m), ..., s1,(m)) € B) = P((Si,, ..., Sp,) € B) + —-—::—“ )
where |©| < 1, and
va((s5(m), ..., 55,(m)) € B) <2P((Sy,,.... Sy,) € B) (6)

uniformly in B C RP.

__ At first, we note that the assertions of Theorem for the processes Se(m,.) and
Sk(m, .) are equivalent. This follows from the estimate

Se(m, .), Se(m, ) >
""(X'Q&"N”(S"(m’ ), Sk(m, ) 5)

< ' -! 1 >e) =
< ”"(XQ}?Nﬁ(k) max |dj(m)| > 8) o(1)
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for each ¢ > 0 as n — ooand later x — oo. In the last step we have used
di(m) < by and the condition (3) of Theorem.

Let in the sequel r = N — K —2, N = N(n) > K be sufficiently large, and
Si(m,t) be defined from S;(m,t) by adding the extra condition j < r for the
summation index j. Similarly, from the process

1 -
Y, = — i k <N, 0,1
(0 = 2o ZO, g t €[0,1]

BjSlBk

by adding the same bound for j we define Y/ (t). Now we have to prove the relations

vn(€) := Un( mkaXNP(Sk(m Dy Sp(m, ) > ) =o(l) (N

\\

and

\\

P(e) := P( mkaXNp(Yk, Y)> ) = o(1) (3)
for each e > 0 as n »> ooand x — o0.

The processes differ from their truncated versions in the interval B, /B, <t < 1
only. Thus from the definitions we obtain

p(Sk(m, ), Sp(m, ) < rglagkﬂ(k)”'

> J,-(m)|.

r<j<l

Hence by (6), Kolmogorov’s inequality, and (3),

Y § eﬂ(r)) < g1’;”'—3’)=0K( ! )
e2B(r)? LL By

r<j<l
S n — ocoand x — oo. Even more simple arguments and Kolmogorov’s inequality
yield (8).

The main probabilistic ingredient is the following assertion.

"\\

vp(e) < 2P( max

LEMMA 2. If the condition (3) holds, then

Y, =K (P —a.s.).

Proof. The assertion of Lemma 2 for the processes Yy follows from Major’s [5]
result. The passage to Y| is provided by (8).

Further, we note that the quantities p(S;(m,.), g), g € K are determined by m
with the digits having indeces 0 < j < r, and that the events {m: p(S;(m,.), g) > ¢}
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or {m: p(S;(m,.),g) < €} can be expressed by that considered in Lemma 1. Its
assertion (5) and Lemma 2 imply

- —-K
v,.( mggrp(S,i(m, 2, K) > s) = P(nggrp(Y,{, K) > e) +0(27%)

Xg\ P

=0(27%)

and

: r - : r -K
vn(xr&lgrp(Sk(m, ), 8) < 8) = P( min p(¥, g) < e) +0(27%)

X

=1+0(27%)

for each ¢ > 0 and g € K when n — ooand x — oo. Since K > 1 is arbitry,
Theorem follows from the estimate (7).

The approach just exposed allows to extend our Theorem to general U additive
functions. Applying other forms of the iterated logarithm laws for sums of i.r.vs one
can obtain their analogs for arithmetic functions related to systems of numerations.
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Skaitmeny sumos pakliista Strassen’o désniui

E. Manstavicius

Darbe Strassen’o kartotinio logaritmo désnis jrodomas sveikyjy neneigiamy skaitiy skaitmenuy
Kantoro skai¢iavimo sistemoje sumoms. Naudojamasi [6] ir (7] straipsniy idéjomis.



