Sums of digits obey the Strassen law

E. Manstavičius* (VU)

This remark continues the author's investigation [7]. To start with, we note that $N_0 = N \cup \{0\}$ is free additive semigroup which basis is an arbitrary numeration system $U = \{u_j\}, j \ge 0, u_j \in \mathbb{N}$. Thus each $m \in \mathbb{N}_0$ has the unique finite expression

$$m = \sum_{j \geqslant 0} d_j(m) u_j \tag{1}$$

with $d_j(m) \in \mathbb{N}_0$. As in [6], we confine ourselves to the mixed radix numeration system (Cantor system) U which (see [3] for more information) is determined by some sequence $b_j \ge 2$, $j \ge 1$ of natural numbers via $u_0 = 1$, $u_j = b_j u_{j-1}$ when $j \ge 1$. As it is proved in [3], the representation (1) of $m \in \mathbb{N}_0$ is unique if $0 \le d_j(m) < b_{j+1}$, $j \ge 0$. Denote

$$s_k(m) := \sum_{0 \le j \le k} d_j(m), \qquad s_m(m) = s(m).$$

Let

$$\nu_n(A) := \frac{1}{n} \# \{ 0 \leqslant m < n, \ m \in A \}$$

be the probability measure defined on the subsets A of N_0 . Probabilistic properties of the sums of digits are fairly interesting. We name few of them in the case of q-adic numeration system, e.g. when $b_j \equiv q \geqslant 2$. H. Delange [1] obtained the following asymptotical formula for the mean value

$$\frac{1}{n} \sum_{m=0}^{n-1} s(m) = \frac{q-1}{2} N + F(N), \qquad N = \frac{\log n}{\log q},$$

where F is a suitable continuous and nowhere differentiable function of period 1. Exact bounds for the error F(N) had been given in [2]. Denote

$$D_n(t) = \frac{1}{\lambda \sqrt{N}} \left(s_{Nt}(m) - \frac{(q-1)Nt}{2} \right), \qquad \lambda^2 = (q^2 - 1)/12, \qquad t \in [0, 1].$$

We proved in [6] that the probability measure $v_n \cdot D_n^{-1}$ defined on the Borel σ -algebra of the space $\mathbf{D} = \mathbf{D}[0, 1]$ weakly converges to the Wiener measure. In this case we

^{*}The research is partially supported by Lithuanian Science and Studies Fund.

may assume that **D** is endowed with the topology defined by the supremum metric denoted in the sequel by ρ . We have from this result

$$\nu_n \left(\max_{k \leqslant N} \left| s_k(m) - \frac{(q-1)k}{2} \right| < x\lambda \sqrt{N} \right)$$

$$\longrightarrow \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \exp\left\{ -\frac{\pi^2 (2k+1)^2}{8x^2} \right\}, \quad x > 0.$$

Even the last relation gives little information about the bounds of the sequence $s_k(m)$ when $k = \to \infty$ for "almost all m". Thus, the purpose of the present investigation is to fill up this gap by giving the exact order of growth for $s_k(m)$. We will extend this problem to a functional one and establish an analog of the Strassen functional law of iterated logarithm. In proving that we will use the author's approach [7] having its origin in the Kubilius' study [4]. The ideas of the paper [6] dealing with the strong invariance principle for additive arithmetic functions defined on the semigroup N will be also exploited.

Now denote

$$n =: a_N u_N + \dots + a_1 u_1 + a_0, \qquad N = N(n) = \max\{k : u_k \le n\};$$
$$\bar{d}_j(m) = d_j(m) - (b_{j+1} - 1)/2, \qquad \sigma_j^2 = (b_{j+1}^2 - 1)/12$$

for $0 \le j \le N-1$ and

$$\bar{d}_N(m) = d_N(m) - a_N/2, \qquad \sigma_N^2 = a_N(a_N + 2)/12.$$

Let

$$B_k = \sigma_0^2 + \dots + \sigma_{k-1}^2, \qquad \beta(k) = \sqrt{2B_k L L B_k}, \qquad 0 \leqslant k \leqslant N$$

where $Lu = \log \max\{u, e\}$ and

$$\bar{S}_k(m,t) = \frac{1}{\beta(k)} \sum_{\substack{j \geq 0 \\ B_j \leqslant t B_k}} \bar{d}_j(m), \qquad k \leqslant N, \qquad t \in [0,1].$$

Let $\widehat{S}_k(m, t)$ be the piecewise linear curve in the coordinate plane joining the points $(0, 0), \ldots, (B_l/B_k, S_k(m, B_l/B_k)), l = 0, 1, \ldots, k$. We recall that the Strassen set \mathcal{K} is comprised by absolutely continuous functions g such that g(0) = 0 and

$$\int_{0}^{1} (g'(t))^{2} dt \leqslant 1.$$

For the processes X_k in **D** defined on some sequence of probability spaces $\{\Omega_n, \mathcal{F}_n, P_n\}$, say, for $k \leq N = N(n)$, we denote

$$X_k \Longrightarrow \mathcal{K} \qquad (P_n - \text{a.s.})$$
 (2)

if the following two relations hold

$$\lim_{x \to \infty} \limsup_{n \to \infty} P_n \left(\max_{x \le k \le N} \rho(X_k, \mathcal{K}) \ge \varepsilon \right) = 0$$

and

$$\lim_{x \to \infty} \liminf_{n \to \infty} P_n \left(\min_{x \le k \le N} \rho(X_k, X) < \varepsilon \right) = 1$$

for each $\varepsilon > 0$ and each $X \in \mathcal{K}$. Here as usually, $\rho(X, A) = \inf{\{\rho(X, Y) : Y \in A\}}$. The measurability of this distance will be provided by the very construction of the probability spaces. If $P_n = P$ does not depend on n, our notion (2) coincides with the Strassen's invariance priciple, e.g., it means that the sequence X_k is relatively compact ant \mathcal{K} is the set of its partial limits P almost surely.

THEOREM. Let S_k be either of \overline{S}_k or \widehat{S}_k and

$$b_j = o\left(\sqrt{B_j/LL \, B_j}\right) \tag{3}$$

as $j \to \infty$. Then

$$S_k(m,.) \Longrightarrow \mathcal{K} \qquad (v_n - a.s.).$$
 (4)

Applying suitable continuous functionals in the relation (4), as in [6], we obtain

COROLLARY. If the condition (3) of Theorem is satisfied, then we have v_n -a.s.:

- i) $S_k(m, 1) \Longrightarrow [-1, 1];$
- ii) $(S_k(m, 1/2), S_k(m, 1)) \Longrightarrow \mathcal{L} := \{(u, v) : u^2 + (v u)^2 \le 1/2\};$
- iii) $S_k(m, 1/2) \Longrightarrow [-\sqrt{2}/2, \sqrt{2}/2];$
- iv) if k_1 is the subsequence for which $S_{k_1}(m, 1/2) \to \sqrt{2}/2$, then $S_{k_1}(m, .) \to g_1$, where

$$g_1(t) = \begin{cases} t\sqrt{2} & \text{if } 0 \le t \le 1/2, \\ \sqrt{2}/2 & \text{if } 1/2 \le t \le 1; \end{cases}$$

v) if k_1 is the subsequence for which $S_{k_1}(m, 1/2) \rightarrow 1/2$ and $S_{k_1}(m, 1) \rightarrow 0$, then $S_{k_1}(m, t) \rightarrow g_2$, where

$$g_2(t) = \begin{cases} t & \text{if } 0 \le t \le 1/2, \\ 1 - t & \text{if } 1/2 \le t \le 1. \end{cases}$$

Thus in the case of q-adic numeration system, we have

$$|s_k(m) - (q-1)k/2| \le (1+\varepsilon)\lambda\sqrt{2kLLk}$$

"for almost all" m when $x \le k \le N$ with sufficiently large x and n. This estimate is sharp in the sense that ε can not be changed by $-\varepsilon$. In order to improve the remainder term $\varepsilon \sqrt{2kLL\,k}$, one had to apply the Feller's type law of iterated logarithm and the approach of the present remark. Going along these lines one can obtain the estimate

$$|s_k(m) - (q-1)k/2| \le \lambda \left(2k(L_2k + \frac{3}{2}L_3k + L_4k + \dots + (1+\varepsilon)L_pk)\right)^{1/2}$$

valid for each $p \ge 4$ and $\varepsilon > 0$. Here $L_j k = L(L_{j-1} k)$.

Proof of Theorem. The main auxilliary results have been obtained by the author in [6]. To quote them, we need some notation. Let $\{I_l\}$ and $\{J_l\}$ be arbitrary systems of subsets of the sets $\{0, 1, ..., r\}$ and $\{0, 1, ..., N\}$ respectively, where $1 \le l \le p$, $p \ge 1$ and $1 \le r \le N - 1$. Put

$$s_I(m) = \sum_{j \in I} d_j(m), \qquad S_I = \sum_{j \in I} \xi_j,$$

where ξ_j , $0 \leqslant j \leqslant N$ are independent random variables (i.r.vs) defined on some probability space $\{\Omega, \mathcal{F}, P\}$ by

$$P(\xi_j = d) = 1/b_{j+1}, \qquad 0 \le d < b_{j+1}$$

for $0 \le i \le N-1$ and

$$P(\xi_N = d) = 1/(a_N + 1), \qquad 0 \leqslant d \leqslant a_N.$$

Put $\bar{\xi}_j = \xi_j - \mathbf{E}\xi_j$, $0 \le j \le N$.

LEMMA. There exist a probability space and the i.r.vs such that

$$\nu_n((s_{I_1}(m),\ldots,s_{I_p}(m)) \in B) = P((S_{I_1},\ldots,S_{I_p}) \in B) + \frac{2\Theta u_{r+1}}{n},$$
 (5)

where $|\Theta| \leq 1$, and

$$\nu_n((s_{J_1}(m),\ldots,s_{J_p}(m)) \in B) \leq 2P((S_{J_1},\ldots,S_{J_p}) \in B)$$
 (6)

uniformly in $B \subset \mathbf{R}^p$.

At first, we note that the assertions of Theorem for the processes $\bar{S}_k(m,.)$ and $\widehat{S}_k(m,.)$ are equivalent. This follows from the estimate

$$\nu_n \left(\max_{x \leq k \leq N} \rho(\bar{S}_k(m,.), \widehat{S}_k(m,.)) \geqslant \varepsilon \right) \\
\leq \nu_n \left(\max_{x \leq k \leq N} \beta(k)^{-1} \max_{0 \leq l \leq k} \left| \bar{d}_l(m) \right| \geqslant \varepsilon \right) = o(1)$$

for each $\varepsilon > 0$ as $n \to \infty$ and later $x \to \infty$. In the last step we have used $d_l(m) \leq b_{l+1}$ and the condition (3) of Theorem.

Let in the sequel r = N - K - 2, N = N(n) > K be sufficiently large, and $S_k^r(m,t)$ be defined from $\bar{S}_k(m,t)$ by adding the extra condition $j \leq r$ for the summation index j. Similarly, from the process

$$Y_k(t) := \frac{1}{\beta(k)} \sum_{\substack{j \ge 0 \\ B_j \le tB_k}} \bar{\xi}_j, \qquad k \le N, \ t \in [0, 1]$$

by adding the same bound for j we define $Y_k^r(t)$. Now we have to prove the relations

$$\nu_n(\varepsilon) := \nu_n \left(\max_{x \le k \le N} \rho(\bar{S}_k(m,.), S_k^r(m,.)) \ge \varepsilon \right) = o(1)$$
 (7)

and

$$P(\varepsilon) := P\left(\max_{x \le k \le N} \rho(Y_k, Y_k^r) \ge \varepsilon\right) = o(1)$$
 (8)

for each $\varepsilon > 0$ as $n \to \infty$ and $x \to \infty$.

The processes differ from their truncated versions in the interval $B_r/B_k \le t \le 1$ only. Thus from the definitions we obtain

$$\rho(\bar{S}_k(m,.), S_k^r(m,.)) \leqslant \max_{r \leqslant l \leqslant k} \beta(k)^{-l} \left| \sum_{r < j \leqslant l} \bar{d}_j(m) \right|.$$

Hence by (6), Kolmogorov's inequality, and (3),

$$\nu_n(\varepsilon) \leqslant 2P\left(\max_{r\leqslant l\leqslant N} \left|\sum_{r\leqslant j\leqslant l} \bar{\xi}_j\right| \geqslant \varepsilon\beta(r)\right) \leqslant \frac{2(B_N - B_r)}{\varepsilon^2\beta(r)^2} = o_K\left(\frac{1}{LL B_N}\right)$$

as $n \to \infty$ and $x \to \infty$. Even more simple arguments and Kolmogorov's inequality yield (8).

The main probabilistic ingredient is the following assertion.

LEMMA 2. If the condition (3) holds, then

$$Y_k^r \Longrightarrow \mathcal{K} \qquad (P - a.s.).$$

Proof. The assertion of Lemma 2 for the processes Y_k follows from Major's [5] result. The passage to Y_k^r is provided by (8).

Further, we note that the quantities $\rho(S_k^r(m,.), g)$, $g \in \mathcal{K}$ are determined by m with the digits having indeces $0 \le j \le r$, and that the events $\{m: \rho(S_k^r(m,.), g) > \varepsilon\}$

38 E. Manstavičius

or $\{m: \rho(S_k^r(m,.),g) < \varepsilon\}$ can be expressed by that considered in Lemma 1. Its assertion (5) and Lemma 2 imply

$$\nu_n \left(\max_{x \leqslant k \leqslant r} \rho(S_k^r(m,.), \mathcal{K}) \geqslant \varepsilon \right) = P \left(\max_{x \leqslant k \leqslant r} \rho(Y_k^r, \mathcal{K}) \geqslant \varepsilon \right) + O(2^{-K})$$
$$= O(2^{-K})$$

and

$$\nu_n \left(\min_{x \leqslant k \leqslant r} \rho(S_k^r(m,.), g) < \varepsilon \right) = P \left(\min_{x \leqslant k \leqslant r} \rho(Y_k^r, g) < \varepsilon \right) + O(2^{-K})$$
$$= 1 + O(2^{-K})$$

for each $\varepsilon > 0$ and $g \in \mathcal{K}$ when $n \to \infty$ and $x \to \infty$. Since K > 1 is arbitry, Theorem follows from the estimate (7).

The approach just exposed allows to extend our Theorem to general U additive functions. Applying other forms of the iterated logarithm laws for sums of i.r.vs one can obtain their analogs for arithmetic functions related to systems of numerations.

REFERENCES

- [1] H. Delange, Sur la fonction sommatoire de la fonction 'somme des chiffres', *Enseignement Math.*, **221** (1975), 31–47.
- [2] M. P. Drazin and J. S. Griffiths, On the decimal representations of integers, *Proc. Camb. Phil. Soc.*, 48(4) (1952), 555–565.
- [3] A. S. Fraenkel, Systems of numeration, American Math. Monthly, 92(2) (1985), 105-114.
- [4] J. Kubilius, *Probabilistic Methods in the Theory of Numbers*, Translations of Math. Monographs, Vol. 11, Amer. Math. Soc., Providence, RI, 1964,
- [5] P. Major, A note on Kolmogorov's law of iterated logarithm, Studia Scient. Math. Hung., 12 (1977), 161-167.
- [6] E. Manstavičius, Functional approach in the divisor distribution problems, Acta Math. Hungar. 66(3) (1995), 343-359.
- [7] E. Manstavičius, Probabilistic theory of additive functions related to systems of numeration, New Trends in Probability and Statistics, Vol. 4, A. Laurinčikas et al. (Eds), VSP/TEV, Utrecht/Vilnius, 1997.

Skaitmenų sumos paklūsta Strassen'o dėsniui

E. Manstavičius

Darbe Strassen'o kartotinio logaritmo dėsnis įrodomas sveikųjų neneigiamų skaičių skaitmenų Kantoro skaičiavimo sistemoje sumoms. Naudojamasi [6] ir [7] straipsnių idėjomis.