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On the Euler function

E. Stankus* (VU)

Let ¢(n) denote the function of Euler, i.e. the number of positive integers not
exceeding n, which are relatively prime to n. The miscellaneous results on this
function are known.

We consider the sum

A= ) 1.
@(n)<x

In this paper we survey the results on asymptotic behaviour of the sum A (x).
The proof of the equality
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where ¢ (s) is the Riemann zeta-function, is given by P. Erdos in 1945 [7]. His proof
is based on the theorem of Schoenberg [10], that n/ ¢(n) possesses a distribution
function. The other proof of (1) was given by R. Dressler [6] and also the equality

(1) follows from the Wiener-lkehara theorem [4].
To obtain the estimate of the remainder term

R(x) = A(x) — ax,

the consideration of generating function

F(s) = 2 Py =¢t()G(s), s=o+it, o > 1,
where | |
G = 1 -,
© rI(*Xp—n* w)

r

is necessary. On the other hand the generating function F(s) is closely connected
with the zeta function Z(s) of corresponding set of generalized integers. If more

exactly, let
1 -1 00
Z(s) = (1 — ) = vt oo > 1,
[l (p—=1) ,.Z,:ﬂ '

p>2
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where v; = 1, vy, v3, ... is increasing sequence of generalized integers generated
by sequence of generalized primes {p — 1} (p are rational prime numbers), g, =
1, B2, B3, ..., are non-negative integers. Then

F(s) = Z(s)H(s),
where H(s) is analytic in the half-plane o > % Besides,
o0 o0 ]
H() = dk™ =[] (1 (== -p™)D] p"-"")‘
k=1 p>2 j=0

If B(x) is the number of generalized integers v; not exceeding x, i.e.
B(x)=)_ B,

Vi <x

then [4]
[x]

A(x) = ; dkB(%).

Due to this equality the asymptotic formula for A(x) may be deduced from the
asymptotics of B(x). In this way in 1972 P. Bateman [4] deduce the estimate

R(x) = O(xexp{ — c(logx)'/*})

for any ¢ > 0 from theorems of Beurling’s generalized numbers theory. In the same
Paper the classical method of contour integration gives more exact result

R(x) = O(xexp { — c(logx loglog x)"/}) ()
for every constant ¢ < 1 /ﬁ. The proof of P. Bateman uses such evaluation of

|G(S)l| in the strip 0 < o < 1: if |¢| > 8 and & > 0g(2), oo(t) is some function such
that = < ay(r) < 1, then

IG(s)| < exp {50]¢]'~7® loglog |¢]}. (3)
J.-L. Nicolas [9], A. Smati [11], M. Balazard and A. Smati [2] have studied the
elementary methods of estimation of R(x). But their methods give the estimates,

Which are weaker than 2).
Only in 1996 [12] the method of P. Bateman gives the estimate

logloglogx /1 172
R(x) = (4 Clogloglogx (1
(x) 0<x expl (l + log log.x (2 log x log logx)
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for some constant ¢ > 0. Thus the estimate (2) is valid for ¢ < % In the proof the
slightly more exact evaluation of |G(s)| is used.

In the same 1996 year M. Balazard [1] proved the formula (2) with ¢ < V2. His

proof is elementary based on the application of H. Diamond’s [5] theorem.

Also in 1996 M. Balazard and G. Tenenbaum [3] proved the best result up to

date: for some constant ¢ > 0 the estimate

R(x)=O(xexp{— c(log)*3(log logx)"/s}) 4)

is true. The method of the proof is analytic and uses the more exact than (3) evaluation
of G(s): there exists the constant k£ > 0, for which

G(s) = O((log T)**(loglog T)*?)

foro > 1—kB(T), T = |t| + 3, where

B(T) = (log T)*(loglog T)~*/*.

The proof of evaluation (4) is based on the results of Karatsuba [8], i.e. it is necessary
to estimate the trigonometric sums

Sy = Z (p—1", M <N <2M.
M<pgN

Probably the error R(x) may be evaluated more exactly than (4). P. Erdés con-

jecture is

R(x) = O(xexp{ — (logx)'~*})

for every € > 0.
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Apie Oilerio funkcija
E. Stankus

Tegu ©(n) - Oilerio funkcija. Nagrinésime sumg

Alx) = Z 1.

Y(n)<x

Yra Zinoma, kad
e A® @10
x=>00 x T T g(6)

kur £(s) — Rymano dzeta funkcija. Straipsnyje apZvelgiami metodai, leidZiantys jvertinti asimp-
totinés formulés
A(x)=ax + R(x), x => o0

liekamajj nari R(x) bei supaZindinama su naujausiais autoriaus rezultatais.



