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Quadratic triangular Bézier patches on quadrics
K. Karciauskas (VU)

1. INTRODUCTION

A problem of testing if a quadratic triangular Bézier patch is on a quadric has been
investigated by many authors [1-3, 6-8]. It was considered from the different points
of view. And in each case it could be thought as has been solved. But Farin in [4]
still declares it as a problem. We present both geometric and analytic conditions,
verifying if a given quadratic triangular Bézier patch defines a quadric or not. In
order not to complicate a formulation of main theorem some natural assumptions are
made. It is not difficult to show that, if it is necessary, after proper subdivision of
initial patch all assumptions can be satisfied. A proof of the theorem is based on
classical facts from projective geometry of quadrics and well known results about
Patches on them, discovered by some authors [1, 2, 6, 8]. We also use results of
Lu [7] about patches on degenerate quadrics. Our approach leads to simple formulas
for testing if a quadratic triangular Bézier patch defines a quadric. This is in contrast
to the previous approaches, when testing was described as an algorithm. Also we
present simple formulas for construction of all possible types of quadratic triangular
patches on quadrics. Some of them look rather strange, but they still represent natural
dofnains on quadrics. Most of the formulas for constructive approach were derived
using MAPLE’s power of symbolic computation.

The paper is organized as follows. In Section 2 the notations are introduced
and the main theorem is formulated. In Section 3 its analytic version is given.
Constructive approach is presented in Sections 4-6. A coordinate system is chosen
In these sections for every case so that the formulas and computations are most
Simple. Some of the presented formulas do not possess an expected symmetry. It is
Caused by an attempt to get the formulas as rational expressions of input data, since
We prefer to use exact arithmetic computations.

2. NOTATIONS AND MAIN THEOREM
We denote by:
AB - 4 line through A and B;
éBC - a plane, containing noncolinear points A, B, C;
AABC - a set of inner points of a triangle with vertices A, B, C;
cr(ABCD) - a crossratio of four collinear points A, B, C, D, defined as in [5].

_ _FOT a quadratic triangular Bézier patch with control points P;j; and weights w;jx,
Lk >0, +Jj+k =2 weset: Py =Py, Py = Ppg, P2 = Popa, wog = wagg,
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wi = wozo, W2 = Woo2, Po1 = Pio = Pryo, P12 = P2y = Poyy, Py = Py = Py,
W1 = wWjp = Wilo, W12 = wW2; = W11, W20 = W2 = Wjgl, Qij = (w;P; +
w;iPij)/(w;i + wjj).

In the last notation of Farin points Q;; and later on different indexing letters
represent different integers from {0, I, 2}. We suppose control points are noncom-
planar — otherwise there is nothing to investigate. In this and next section we assume
additionaly:

(1) all weights w;, w;; are positive;

(2) the points Py, P;, P, are noncolinear;

(3) the points P;, P;, P;; are noncolinear and P, ¢ P;P;P;;;

(4) the points P;, P;;, P;;, are noncolinear;

(5) the points Py, P12, Py, are noncolinear and the points P;, P;, P;;, Py, Pj
are noncomplanar.

By P we denote an intersection point of three planes P;P;P;; (it may be infinite).
An intersection point of three planes P;P;;P; is denoted by Q (uniqueness of Q
is equivalent to (5)). It also may be infinite. We also set Ri; = Fﬁ al lT,F,—,
P}, = QP;;NPoP Py, Q;; = QQi;NPoP /Py, R}, = PP, NPP;, S, = QPP P;P;;.

THEOREM 1. The rational quadratic Bézier triangle defines a quadric if and only
if three lines Py P; j are concurrent and

(@)  cr(PiR;;QijPij)er(PR;;Q;iP;i) =4, (i, j) € {(0, 1), (1,2), (2,0)},
or

or(P,R, Q) P} )er(PR,Q,Py) =4, (i, ) € {(0, 1), (1,2), 2,0},
(a)
Sk € AP;P;P;; for all three or exactly one of the points Sy, Sy, S,.

If conditions of the theorem are satisfied an equation of a quadric can be written
as follows. Let Lo =0, L, =0, Loy =0, L = 0 are equations of the planes
PoPy P2y, P P2Pg, PoP,Q, PP, P, respective]y. We set M = LQL]L(Z)I(PZ) -
LO(PZ)LI(PZ)L(%,. Then: if (a) is satisfied the equation of a quadric is M L2(P) —
M(P)L? = 0; if (') is satisfied the equation is M = 0. We can get all information
about the quadric from its equation.

If (a) is true then depending on the data we get all possible types of quadrics.
But if (a') is true then a quadric is a cone with a vertex Q (we consider cylinder as
a special case of a cone with an infinite vertex).

The next proposition explains when lines _Pﬁ: are concurrent in coordinate free

terms. Let A} = PPy, HFF(;, Ay = P,Py ﬂr)P_o, A = PoPo Py NP, P;.

__ PROPOSITION. The lines PoP\,, P\ Py, PPy, are concurrent if and only if P12 €
PK, P|2 ;ﬁ P, P #* K, where K € P|P2 and CT(KP1P2A12) + Cl'(PA]AzP()) =0.
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Remark 1. There is no doubt an intersection of an expected quadric and PoP{P;

is a conic. So the condition for the lines P¢P; ; to be concurrent is nothing else but
the theorem of Brianchon for conic.

Remark 2. Suppose not all assumptions are satisfied. Then it is not difficult
sometimes to check if the patch defines a quadric or not without further investigation.
For example:

assumption (2) is not true, but Py, P; ,P, are distinct — “no";

assumption (2) is not true, but P; = P; =P;; , Py =P; - “yes";

Po = P] = P2 - “no".

3. ANALYTIC VERSION OF THE MAIN THEOREM

In this section we assume P is a finite point. It is easy to check, that common situation
can be reduced to this one. Let P = (0;0;0), Py, = (1;0;0), P, = (0; 1;0),
Py = (0;0;1), Py = (a2 b2;0), P2 = (0;a0; bo), Poo = (b1; 0;a1). We set
di = aj+b; — 1,0 < i <2; hij = ajaj +bib;, gij = (ax +bi)(a; +bi —2a;b;) — hyj,
(i, )) € {(0,1), (1,2), (2,0} fo = bibado, fi = aohadi, fo = aoarda, for =
badodiho1/go1, fi2 = aodidahiz/g12, f20 = aoaidadohan/bogao.

THEOREM 2. Rational quadratic Bézier triangle definies a quadric if and only if
aoaia = bobby and

@ wf/wiw; = 1/4abr, (i, j) € ((0, D), (1,2), (2,0)},

or

wlzl/wle = f,i/flfl! (11 .I) € {(Ov 1)v (1’ 2)’ (2a 0))» fOfl > Ov f0f2 > 0,

(2') all three or exactly one of the expressions fofoi, fofi2, fofzo are positive.

4. CONSTRUCTIVE APPROACH TO THE MAIN CASE

Here we construct patches under assumptions (2)-(5) of Section 2. The weights are
not necessary positive. We do not care much about their positivity in the following
S€ctions too. It is not difficult to get from the presented formulas the conditions when
all weights are positive. But we do not discuss here those sometimes boring details.
And we denote an equation of a quadric by F = 0.

Case 4.1: P is finite.

Let P = (0;0; 0), Py = (1;0;0), P; = (0; 1;0), P, = (0; 0; 1), Poy = (az; by; 0),
Py = (b1;0;a;). Then Pja = (0, ao, by), where ag = rbiby, by = raias, r # 0,
" # 1/(a\ay + biby).

4.1.1. The weights are defined by the formulas wo = bz, w| = a2, wy = aoas/bo,
Wor = 1/2, wy; = ay/2by, wa = apaz/2boby. They are all positive if and only if all
@, b; are positive.
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F = apa1a2x(x — 1) +axbobyy(y—1)+aoazbiz(z— 1) +bob xy +apazxz +azb, yz.

4.1.2. We set w;; = f;, wij = f;;, where f;, f;; are defined in Section 3. The
quadric is a cone. F = M, where M is derived as explained in Section 2. (Only
here and in 4.2.2 we are unable to present a compact formula for F).

Remark. Before investigating the positivity of the weights we can change (if
necessary) a sign for any two of w;;. The same is true for all cases.

Case 4.2: P is infinite.

Let Po = (0;0;0), Py = (1;0;0), P, = (0; 1;0),Po; = (1 — az; 0; c2), Py =
(05 ay; c1). We denote dy = (1 — a;)(1 — a;) + a;aj. Then Py = (ag; 1 — ag; co),
where ay = (1 — a;)(1 — az)/dp.

4.2.1. The weights are defined by the formulas wy = a,(1 — a3), w, = ajaz,
wy = (1 —a))(1 —az), wor = a1/2, wyz = dy/2, wy = (1 —ay)/2. They all are
positive if and only if 0 <a; < 1,0 <a; < 1.

F=acax(x =1+ -a)ciy(y— 1)+ (c1(l —az) + a1 — codo)xy + a1 (2a; —
Dxz + (a2 — )(2a; — Dyz +a;(1 — ap)z.

4.2.2. The weights are defined by the formulas wy = (1 — a;)/c;, w, = ao/co,
wy = apaic2/(1—az)cocy, wor = da/(c2dy—c 1 (1 —ag) —cody), wia = agcado/(co(1—
az)(codo — c2(1 — ay) — €1a2)), wa = apaicad; /((1 — ap)(1 — az)cy(cydy — co(1 —
az) — c2ap))-

The quadric is a cone, F = M.

5. CONSTRUCTION OF SPECIAL PATCHES WITH NONDEGENERATE
BOUNDARY CONICS

A patch on quadric with nondegenerate boundary conics can not be constructed using
formulas from Section 4 if at least two conics touch each other. So we assume here
the points Py, Po;, Py are collinear, Py, # Py, Pyg # Py. In the cases 5.1, 5.2, 5.3
the points Py, P2 are fixed without further restrictions on arbitrary line through Po.
which does not lie in PP P;. We also assume wy = w; = w, = | and wy,, wyo are
arbitrary positive values.

Case 5.1: P|P2P|2 = P()P P’)

Let Pp = (0;0;0), Py = (1;0;0), P, = (0;1;0), Py;y = (0;0: c3), Py =
(0;0; c;) Then Py = (ag; bo; 0), wi2 = 1/2rcicowp wag, Where ap = r(%w')(]«
by = rcawd,.

F = box(x = 1) +aoy(y — 1) + (a0 + bo)2* /4(wd, + 2wly) + xy + boxz/c2 +
apyz/c.

Case 5.2: P\ P,Py, # PoP\P,, P is finite.
Let P = (0;0;0), Py = (1;0;0), P, = (0; 1;0), P, = (0;0; 1), Pm (az; 05 0)»
Py = (a1;0:0). We set d = ax(l — a))w}, + ay(1 — a)wi, + wd wi,(ar — a)’.
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bo = ai(1 — ap)wiy/d, co = ax(l — a)wd,/d. Then Py = (0; by, co), wiz =
d/worwyo(a) + az — 2a1az). The quadric is a cone. If one of ay, a3 is zero we get
a patch with one boundary conic touching two others.

F=x24 (a5 + Dy? + (a151 + Dz2 4 (s2+2)xy + (51 +2)xz + (az50 +as) —
4w31w%0(a| —a3)?42)yz—2x—(azsr+2)y—(ais1+2)z+1, where s; = 4w§0(a1 -1,
§= 4w8](a2 - 1.

Case 5.3: P P,Py; # PoP P, P is infinite.

Let Py = (0;0;0), P, = (1;0;0), P, = (0,1,0), Poy = (0;0;¢2), Ppo =
(0;0; ¢1). We setd = ciw2, +cow?, ap = cw}, /d, co = w w3 (cy—c2)?/d. Then
Py = (1 — ag; ap; ), w12 = d/(c1 + c2)woiwao. The quadric is a cone.

F = c%w%lx(x -1+ cfw%oy(y — 1) +2z%/4 + (c‘%w(z,l + cfw%o — wglwgo(cl -
))xy + cud xz + crwiyyz.

Case 5.4: P()], on € P()P1P2

Py5 is an arbitrary point not lying in PoPP,. Let Py = (0;0; 0), P, = (1;0;0),
P, = (0;1;0), P, = (1 — ag; ao; co). Poi(az; by; 0) is arbitrary point in PoP P,
Py ¢ PoP, U P,P, U P,Py, satisfying a; + by # 1/2. w); is any nonzero value.
Then Py = (a;51;0), wo = 1 —ay — by, wy = a, wp = —by, wo = 1/2,
Wy = 1/2 — ay — by, where a; = ar/(Ray +2by — 1), by = by/(2a; + 2b5 — 1). The
quadric is a cone.

2F = bacowipx (x — 1) —azcowiay(y — 1) + (1 —az2 — b2) (wiz(co — b2) + azb2)* +
4wiyasbyag(1 — ag))z?/4azbycowiz + (1 — 2az)cowizxy + (wiz2 (2aoa + 2aohs — ag —
o) —azby)xz+ (wia(az+by+ag—co— 1) —azbr) yz+ (w2 (co —apaz —aob2) +axby)z.

6. CONSTRUCTION OF PATCHES WITH THE DEGENERATE BOUNDARY
In the cases 6.1, 6.2, 6.3 we assume P, P, P, are distinct, in 6.4, 6.5, 6.6 - P = P,.

Case 6.1: the boundary contains two nontangent conics and a line segment.

Points Py, Py ¢ PoP P, are fixed assuming Py, Po;, Py are noncollinear. Let
Po = (0:0,0), Py = (1;0;0), P, = (0; 150), Poy = (a2; 0; c2), Pop = (0: 13 1),
Then for fixed r we set wo = ajast, wy; = a|((1 —ax)t —c2), wz = a((1 —a)t —cy),
Wor = ai1/2, wyo = ast/2, wiz = (wy + w2)/2,a0 = wi/(w1 + w2), Pz = (1 -
Go; ap; 0).

F=acx(x— D4acy(y —1) —ajazz?/t + (axcy +aic2)xy +a (1 —2ax)xz +
(1 =2a)yz + aja,z.
e - a;) = ¢1(1 — ay) (the points Py, P,, Py;, Py are complanar) the quadric
1S a cone. And since (0; 0; ¢) lies on the quadric it is not difficult to understand how
changing 1 we can change a shape of the patch.

Ca.se 6.2: the boundary contains two tangent conics and a line segment.

P Points Po1,Pyy ¢ PoP,P, are fixed assuming Py, Py, Py are collinear. Let
0= (0;0;0), Py = (1;0;0), P, = (0; 1;0), Poy = (0;0; c2), P2y = (0: 0; c).
hen Pj, = (1 — ap;ap; 0) € PPy, wo = wy = wy = |, wja = d/2¢icawpwa,

Where d = cw), + ctwly, ap = Gw}, /d
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F=cdwdx(x—1)+ Swiy(y—1D+ 22/4+dxy + cawd xz + cywlyyz.
If ¢, = ¢ (Pg; = Py) the quadric is a cone.

Case 6.3:the boundary contains two line segments and a conic.

We assume Pj; ¢ PPy, wiy is arbitrary. Let Py = (0;0;0), P; = (1;0;0),
P, = (0;1;0), Pi; = (1 —ao, a0, co). Then Py = (az;0;0) € PoPy, Py =
0;ay;0) € PoPy, wo = wy = wp = 1, wo = (4!22 + 1)/4t:, wyy = (4t|2 + 1)/41,
where a; = 4t2/(413 + 1), ay = 417/ (41} + 1).

F = (ap(1—ag)w?,—1/4)2>+c2wlxy—agcow?, xz+co(ao— 1) yz+2coti taw?, (x +
y— Dz

Case 6.4: the boundary contains two conics.

In this case a patch always defines quadric. We assume P; = P, = Py, wo =
wy = w, = 1. Let Pp = (0;0; 1), P, = P, = P = (0;0;0), Py; = (1;0;0),
Pyo = (0; 1; 0). Then F = w%0x2+w(2)ly2+4w%0wglz(x +y+z—1)+2wo wywi2xy-

Case 6.5: the boundary contains two conics and a double line segment.

Let Po = (1;0;0), P = P, = (0;0;0), Poy = (0;1;0), Py = (0;0: 1) -
The weights wq, wyo are arbitrary values, wy = w; = w2 = 1. Then Ppp =
(0; b; c),where b is arbitrary, and w;, are fixed setting

(1) w2 = wor/(wor + b(w2 — wor)), ¢ = —bwyg/wo)
or

(2) w2 = wo/(—wo1 + b(w2o + wor)), ¢ = bwzg/wo.

The quadric is a cone. F = 4wd wlyx(x — 1) + wijy? + 4w wlyy(x + 2) + dz.
where d = 2wgwyg for case (1) and d = —2wq wyg for case (2).

Case 6.6: Py = Py

Let Po = (1;0;0), Py = P, = (0;0;0), Py; = Pyy = (0; 1;0), P2 = (0;0; 1)
The weights wq;, w, are arbitrary values and wo = w; = wp, = 1. We set

(1) w20 = woy
or

(2) wao = —woy.

The quadric is a cone. F = 4wd whx(x +y — 1) — w?y? + dxz, where d =
4w, (w12 — 1) for case (1) and d = 4w} (w2 + 1) for case (2).
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Kvadrikiy trikampés kvadratinés Bezje skiautés
K. Karciauskas

Straipsnyje formuojamos bitinos ir pakankamos salygos, nusakancios, kada trikampé kvadratiné
racionali Bezje skiauté priklauso kvadrikei. Be to pateikiamos formulés, igalinanCios efektyviai
konstruoti %ias skiautes. Konstruktyvios formulés gautos pasinaudojus MAPLE paketo simbolinio
skai¢iavimo galimybémis.



