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logics
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1. INTRODUCTION

In this paper we investigate tableau-based theorem proving for some of the three-
valued modal propositional logics. We consider three-valued counterparts (two for
each logic) of two-valued modal logics K, K4, T, B, S4, §5. We denote them by
Ki, K4, T;, B;, S4;, §5;,i € {2,3}. A notion of Kripke frame for these logics
18 as in two-valued case, but now truth values at possible worlds are from the set
ftr ue, false,undefined). These counterparts (except for logics K4 and B) are
considered by Takano in [3], where the cut free sequent calculi for these logics are
constructed.

In this paper we introduce the prefixed tableau systems for the logics K;, K4, T;,
;Bi’ S4;, $5;,i € {2, 3} and prove completeness theorem for these systems. Prefixed
tableay systems for two-valued modal case was elaborated by Fitting in [2]. In
2 prefixed tableau each formula has a prefix. Prefixes of formulas represent the
Names of possible worlds and the accessibility relation between worlds is reflected
by syntactic features of these names. .

e The. Paper is organized as follows. In section 2 we introduce the syntax and
Semantics of the three-valued modal logics. In the next section we present the

Prefixed tableau systems for these logics and prove soundness and completeness of
the systems,

2. SYNTAX AND SEMANTICS

. evtgs put T = {1, 2, 3} and will use T as the set of truth values.' Intuitively,
th values 1, 2, 3 stand for 'true’, 'undefined’ and ’false’, respectively. We let

' K, v, ... denote truth values.
Conﬁzgtr_tulas are constructgd from propositional variables by means o_f .propositional
live 1 1ves apd the necessity operator O; we assume for each propositional connec-
+ the arity o(F) > 0 and the truth function fr : T*F) — T are predetermined.

Definition 2.1. A valued formula is any pair of a formula and a truth value.

i aDeﬁnition 2.2. A (three-valued) Kripke frame is the triplet (W, R, v), where W
assi Nonempty set (set of worlds), R is a binary relation on W, v is a mapping which
W 80s a truth value from T to each pair of propositional variable and an element of
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Definition 2.3. Suppose that (W, R, v) is a Kripke frame and i € {2, 3}. We
call the triplet (W, R, v') a (three-valued) Kripke structure of type i (generated
from (W, R, v)), if v' is the mapping which assigns a truth value to each pair of 2
formula and an element of W and is defined by recursion as follows:

v (p, s) = v(p, s), where p is a propositional variable;

VI (F(AL ..., Aur),5) = fF(V' (A1, 5), ..., v (Aa(ry, 9));

1, if sRt implies v¥(A, 1) =1 for every t € W;
vV2(DA,s) =12, ifsRt and v?(A,1) =2 for somet € W;
3, otherwise.

1, if sRt implies v’(A,t) =1 forevery t € W;

3 —
v(0A, ) = { 3, otherwise.

Let L be a modal logic. Models of L are defined as follows.

Definition 2.4. Models of K; are nothing but the Kripke structures of type :
whereas a model of T;, K4;, B;, S4; is a Kripke structure (W, R, v') of type i
such that R is reflexive, transitive, reflexive and symmetric, reflexive and transitive,
respectively. A model of S5; is a Kripke structure (W, R, v'), where R is reflexive.

symmetric and transitive.

3. PREFIXED PROPOSITIONAL TABLEAUS

We shall consider informally the notions of trees, branches, nodes, etc.
consider the following symbols:
A A

and
Bi0B0O...OBn Bi+By+...+ By,

We

as denoting trees of the following form, respectively:

4
| A

B )
i, l and /l \
o B, o [ ... 0
. B, B; B
o Bn

and we shall abbreviate those symbols by the following expressions:

A A
O{Bi: i <m} +{Bi: i <mj

Definition 3.1. A prefix is a finite sequence of positive integers. A prefixed valued

formula o (A, )) is a prefix o followed by a valued formula (A, A).
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We will systematically use o, o’ etc. for prefixes throughout this paper.

The idea is, we will interpret prefixes as naming worlds in some model. o (A, A)
means that under this model A is forced to have value A in the world o names.

We define tableau rules as follows.

These rules are divided in two parts: the rules for formulas of the form
F(Ay, ..., An), where F is a propositional connective, and the rules for modal-
ized formulas. We begin with formulas of the form F(A,,..., An). We present
the rules for these formulas following [1]. (In fact, these rules are obtained from
the definition of the rules for the formulas of the form F(A,..., A,) from [1] by
omitting the first condition. )

For each valued prefixed formula o (F(Ay,..., An),A) , where F is an m-ary
propositional connective, we define the rule as follows:

o(F(A1, ..., Am). A)
+{CT(A,'],A.I'I)O...OO’(A,‘,,)»],) : A.j,, .. .,A.j, <3 t<m’
and the propositional condition Hy(F; A;,, ..., Aj,) holds}

where H)(F; Aj,, ..., ;) means that
1) if f represents the connective F, then

f(v,,...,v;l,...,v,-z,...,v,«,,...,v,,,)=)»

for all values of the function f, where v;, = A;, and the other v's are arbitrary; and
2)no ¢’ <t satisfies 1).
Before presenting rules for modalized formulas we present a little more terminol-
0gy. The following two definitions are borrowed from [2].

Definition 3.2. We say a prefix o is used on a tableau branch if o Z occurs on the
branch for some valued formula Z. We say a prefix o is unrestricted on a tableau
Eranch if o is not an initial segment (proper or otherwise) of any prefix used on the

ranch.

Let o be an arbitrary prefix.

Definition 3.3. We say the relation of accessibility from on prefixes satisfies:

1) the general condition if o, n is accessible from o for every integer n; 2) the
"everse condition if o is accessible from o, n for every integer n; 3) the identity
Condition if o is accessible from o'; 4) the transitivity condition if the sequence o, o’
18 accessible from o for every non-empty sequence o’

. Now, for the various logics we consider, the accessibility relation on prefixes is
given in the following chart.

For the logic  the accessibility relation on prefixes meets the condition:

K; general
K4, general, transitivity
T; general, identity

B, general, identity, reverse
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S4; general, identity, transitivity
S5; no special conditions, any prefix is accessible from any other

Now we present the tableau rules for modalized formulas. For the logics with
i = 2 these rules are defined as follows.

%%H, where o’ has been used on the branch and is accessible from o.

o(0A,?2 . .
A———zla, n(A.2)’ where o, n is unrestricted prefix.

o(DA, 3)
o' (A, 1)+0'(A,3)
from o.

where o’ has been used on the branch and is accessible

o(0A, 31, where o, n is urestricted prefix.
o,n(A,3)

For the logics with i = 3 the tableaux rules for modalized formulas are defined
as follows.

%?2;’11)2’ where ¢’ has been used on the branch and is accessible from o.
o(0A, 3)

(A D +o, A3 where o, n is unrestricted prefix.
Definition 3.4. A prefixed formula o (A, 1) which occurs over the line of a rule
is called a premise of the rule.

Definition 3.5. Let +{o(A,A))O...00(A, M), j < K}, K > 1 be the ex-

pression below the line in a tableau rule. We say that o (A, A{)o ...00(A, );,’;j) is a
consequence of this rule.
A tableau is a tree, with each node labelled with a prefixed formula.

Definition 3.6. A tableau for a formula (A, 1) is any tree whose first node is the
formula 1(A, A) and those next nodes are determined by the following procedure: ifa
branch of the tree contains a prefixed formula o Z and a tableau rule with the premise
o Z is defined, then this branch can be extended by adding new nodes through the
application of this rule to o Z (following the convention that formulas separated by
"0 go in the same branch and sets of formulas separated by "+" go into different
branches).

Definition 3.7. A tableau branch is closed if it contains both o (A, 1) and o(A, 1
L # w or the branch contains some nonatomic prefixed formula o (A, 1) and there
exists no defined rule with the premise o (A, 1). A tableau is closed if each branch
of it is closed.
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We refer to the accessibility notion on prefixes that is appropriate for a logic L
as L-accessibility for short.

Let L; be a logic we are considering ,i.e. i € {2,3}, L € {K, K4,T, B, 54, S5}.
Let S be a set of prefixed formulas and let M = (W, R, v') be a L;-model.

Definition 3.8. By an L;-interpretation of S in the model M we mean a mapping
I from the set of prefixes that occur in S to W such that if a prefix 7 is L;-accessible
from a prefix o, then 1(0)RI(z). S is L;-satisfiable under the L;-interpretation I
if for each o (A, L) € S v/ (A, I(6)) = M. S is L;- satisfiable if S is L;-satisfiable
under some L;-interpretation.

Loosely, a set of prefixed formulas is L;-satisfiable if it partially describes some
model.

Definition 3.9. A tableau is L;-satisfiable if some branch of it is L;-satisfiable.
A branch is L;-satisfiable if the set of prefixed formulas on it is L;-satisfiable.
Let L; be a logic as above.

LEMMA 3.1. Suppose T is a prefixed tableau that is Lj-satisfiable. Let T' be the
tableau that results from a single L;-tableau rule being applied to T. Then T is
also L;-satisfiable.

Proof as the proof of the lemma 3.1 in the chapter eight in [2].

COROLLARY 3.2 (soundness). If there exists a closed tableau for 1(A, A) then for
each L;-model (W, R, v') and each world s € W v' (A, s) # A.

Proof. Suppose there exists a closed tableau for 1(A, 1), but there is L;-model
(W, R, v) and a world s € W such that v/ (A, s) = A. Define a L;-interpretation /
by setting /(1) = s. It follows that the starting L;-tableau {1(A, 1)} is L;-satisfiable.
Then by lemma 3.1, so is every subsequent L;-tableau. But an L;-satisfiable tableau
¢an not be closed, contradicting the assumption.

Now for every logic L we are considering we prove the completeness theorem.

Let L; be a logic we are considering, i.e. i € {2,3}, L € {K, K4, T, B, §4, §5}.

THEQREM 3.3 (completeness). If in each L;-model (W, R, v') and each world
S € W (A, s) # A, then there exists a closed tableau with the root 1(A, )).

Proof of this theorem follows the lines of the proof of completeness for prefixed
tableaus for two-valued modal logics presented in [2]. We omit the proof here.
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Prefiksinés lentelés trireikiméms modalinéms propozicinéms logikoms
J. Sakalauskaité

Pateiktos lenteliy sistemos trireikiméms modalinéms propozicinéms logikoms. Sioms sistemoms
jrodytos neprieStaringumo ir pilnumo teoremos.



