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An asymptotic expansion of the expected regret risk of
classification under double inverse sampling scheme

K. Duéinskas (KU)

Suppose that individuals comes from one of two distinct populations €21, £, with
positive prior probabilities ), 72, respectively, where Z?=l mr; = 1. The population
of the individual is given by the random 2-dimensional vector ¥ = (Y!, ¥?)" of
zero-one variables, similar as in remarkable monograph of G. J. McLachlan (see
(1]) devoted to the discriminant analysis and statistical pattern recognition. The i-th
component of Y is defined to be one or zero according as an individual belongs or
does not belong to the population ; (i = 1, 2). Then Y is distributed according to
a multinomial distribution consisting of one draw on 2 populations with probabilities
1, my, respectively; that is

2
P(¥ =y =n'n), or Y~Mult(l,n)

with 7 = (), m,); y = (y', y2)', where the prime denotes the vector transpose.

Let X € x ¢ R? a p-dimensional random feature vector which is measured on
each individual. Assume that the distribution of X for the individual from €; has
Probability densities p;(x) which belongs to the parametric family of regular densities
Fi = {pi(x;6;), 6; € ® Cc R™}. In this framework, the topic of classification is
concerned with the relationship between the population-membership label Y, and
the feature vector X. A decision is to be made as to which population an individual
fandomly chosen from 2 = U?___l Q;, belongs on the bases of an observed value of
4. Let d(-) denotes a classification rule formed for this purpose, where d(x) = i
‘mplies that an individual with feature vector X = x is to assigned to the population
RiGi=1, 2). Let C(i, j) denote the cost of allocation when an individual from £; is
allocated to Q; and let C(i, j) always be finite, i.e. max; j=i... C(i, j) = C* < oo.

W}len prior probabilities {x;} and densities {p;(x)} are known, the risk R(d(-))
associated with rule d(-) can be expressed as

2
R@O) = Yo [ Clidw)piwdx,
i=1 X
g Then Bayes classification rule (BCR) dj(x) minimising the risk R(d(")) is defined

a

2
- I p;
dp(x) = arg jn;gi; i pi(x),
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where [; = m;(C(i,3—1i) — C(, j)), (i =1,2).

In practical applications, the density functions {p;(x)} are seldom completely
known. Often they are only known up to the parameters {6;}, i.e., we may only
assert that p; (x) is one of the parametric family of density functions F;.

Suppose that in order to estimate unknown parameters 6, 6,, there are M indi-
viduals of known origin on which feature vector X has been recorded.

That data defined by T = {(X’, YY,...,X)y. Y,’”)’] is referred to in literature as
training sample, where prime denotes vector transpose. The only case of independent
(X[, Y)Y (i=1,..., M) will be considered in this paper.

There are two major sampling designs under which the training data T may
be realised, separate sampling (SS) and mixture sampling (MS). They correspond,
respectively, to sampling from the distributions of X conditionally on ¥ = y and to
sampling from joint distribution of (X', Y’)". With separate sampling in practice, the
feature vectors are observed for a sample of M; individuals taken separately from
each population €; (i = 1,2). The MS design applies to the situation where the
feature vector and population of origin are recorded on each of M individuals drawn
from mixture of the possible populations.

Sometimes under mixture sampling design we need to continue sampling until
both M; > k; with 0 < k; < +00 (i = 1,2). This sampling design is called double
inverse sampling (DIS) (see [2]). Under DIS total training sample size M and one
of M; = Zf_’__l Yj‘ are random (i = 1, 2).

The distributions of M; are

ki i Jok —
Ym0 Chpejrmim?, ifmy =k,

P(Ml =ml)= m) my_ky . (I)
Clptm 171 T30 if my > ki,
, otherwise,
ky ky_j .
2o Chyyjm'my, ifmy =k, )
P(My, =mj) = my ki _my . (2
(M 2) Ck2+m2—|”| T, 2, if my > ks,
, otherwise,
ky ky__ky . .
Ck.+k2”| T,°, ifmi=k,i=1,2,
m my__ky . _
PMy=m, My =m,) = Coytm 17 My, ifmay=1ky, my > ki, (3)
my ky _my .
Ck|+m2—|”1 m, o, ifmy > ka, my =k,
, otherwise.

Only the DIS scheme for training is considered in this paper.

Suppose that densities p;(x) are taken to belong to the same parametric family, i-€-
Fi=F = (p(x;6), 6; € ®©C R™) (i =1,2) and assume that prior probabilitieS
7Ty, mp are known. _ .

Leta = (6],6;) and (6] #6;), j=1,...,m.



An asymptotic expansion of the expected regret risk 189

The so-called estimative approach to the choice of sample-based classification
rule is used. The unknown parameters 6}, 6, in the BCR are replaced by appro-
priate estimates 6y, 6, obtained from the training data 7. Hence this sample-based
classification rule dg(x, @) is defined by

2
di(x,@) = arg"ygzl\é;l,-p,-(x, 6;).

. The actual risk for the rule d,(x, &) is the risk of classifying a randomly selected
individual with feature X and is designated by

2
Ra@) =) m / (C(i. ds(x, &))) pi(x) dx, where & = (8],8;)".
i=1
X

For notational convenience, R4 (@) sometimes will be abbreviated to R,.

The expected risk regret (ERR) is defined as the expectation of the difference
between actual risk R4 and the Bayes risk Rp that would be obtained if all parameters
were known, i.e., Rg = Ra(«). Thus

ERR = Er{Ra(@)} — Rs,

Where Er{R,4} denotes the expectation with respect to distribution of T.

The purpose of this paper is to find an asymptotic expansions of ERR when
maximum likelihood estimates (MLE) of unknown parameters obtained from 7' under
DIS scheme for T are used.

This is an extension of the results of Ducinskas (see [3-4]). In [3] the asymptotic
€xpansion of expected error regret in the situation when only SS scheme was used
for training was given, in [4] the asymptotic expansion of expected error regret in
classification of mixed random vectors under DIS scheme for training was presented.

The following notation will be used in this paper.

Let V, be the vector partial differential operator given by

vl = 9 _6_
* 7 \8a” " dam

m 9 2
=3 (5

i=1

and

forany ¢ = (@!,...,a™) € R™.
Similarly, V2 denotes the matrix second order differential operator

62
80!,'3(!_,‘

V2 =

[+4

ij=1...m



190 K. Ducinskas

Go(x) = Lip1(x) — Ly pa(x),
= {x € R?: Go(x) = O},

and y is the Lebesque measure on I.
Assume that I; denotes the m x m Fisher information matrix based on 6;, i.e.

I = Ei{Vg, In Pi(x) Vg, In p;(x)},

where E;{-} represents the expectation based on distribution with density function
pi(x) (i =1,2).
Let M; denote the number of observations from ; (i = 1, 2). Define the follow-
ing regularity conditions R:
a) for fixed M; MLE 6; admits the following stochastic expansion in some neigh-
bourhood of 6;
b =6 + WM + 0p, (M),

where op, (M%) /M 24 0, ki, depends on the distribution 7; with the probability
density p;(x), but does not depend on M;.

b) second-order derivatives of Er(R4) with respect to o exist and are continuous
in some neighbourhood of a.

THEOREM 1([3]). If regularity conditions R for {p;(x)}i=1.2 hold and SS scheme
for T is used, then

1 2
EER = EZai/M,- +o(Mgh), “)
i=1
where
o =12 / Vg, Pi(X) 7 Vg, pi (x) |V, Go(x)| ™! dy, ®)
r

Mo = min(Ml, Mz).
THEOREM 2. If regularity conditions R for {p;(x)}i=1.2 hold and DIS scheme for
T is used, min{k;}i=)» = ko = 00 and limk,/k; = A > O then

12
EER=-2' E ai/d; + o(ky '),
i=l

where a; is defined in (5) and d; = (1 v (ho/A)* "%k (i = 1,2), Ao = m /7.

Proof. The proof of the theorem is based on the applications of the rezults of
Theorem 1 for the conditional expectation of R4 under the condition {M; = m;, | =
1,2}
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Then

Er(Ra}= Y Y Er(Ra|{M;=m)izi2}- P(Mi = m1, My = m2)

my=ky my=ky

@)
1< _
=Ry + E;aiE(l/Mi) +o(kyh).

Using (1), (2) we obtain

1 1
E(1/M)) = Iny(ka, k1 + 1) /Ry + mln, (ki +2;ky = 2) +0(E), ®)

®

A 1
E(l/Mz):Iﬂl(kl,k2+])/k2+ 9 1”2(k2+2;k|—2)+0(—2),
" -1 2

where

1 X
ca) = Pl =09 de
Lpi0) = 50— 0/ (11

18 incomplete beta-function.

When p, ¢ — oo we can use Wishart approximation

L(p; q) = ®u) +o(l),
Where

P4 1n i
ptq p(l-x)
Then as p, g — oo and limg/p = A,

u=

0, ifr<i=,
lim I, (p; q) = { 1/2, ifr=1=%, (10)
1, ifa> L=

Applying (10) to (8) and (9) we complete the proof of the theorem.
he results of the paper can be use to find optimal training sample scheme (i.e.

OPtimal values of k;, k;) and optimal parametric structure for the classification of
Wide range of distributions belonging to the exponential family.
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Laukiamo rizikos prieaugio asimptotinis skleidinys, naudojant inversing mokymo imti

K. Ducinskas

Straipsnyje nagrinéjamas atsitiktiniy vektoriy klasifikavimo uZdavinys, naudojant mokymo imtis.
gautas pagal ,,inversing* schema. Pateikti laukiamo rizikos prieaugio (expected risk regret) asimp-
totiniai skleidiniai reguliariems pasiskirstymams.



