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A semiparametric model for count data clusterization
with application to medical data

‘M. Radaviéius, J. Susinskas (MII)

1. INTRODUCTION

Let (K, Ny), ..., (K,, N,) be independent discrete observations each having a
probability distribution that depends on an unobservable random variable (rv) 9;, j =
13...,r. Suppose the rv’s ¥y, ..., 0, are themselves independent and identically
distributed (iid) and

m

POy =6)=pi i=l...m Y p=l
1

The problem is to estimate the parameters 6y, ..., 6, and the prior probabilities
P1,..., pm and to classify the observations (to divide into non-overlapping classes)
according to a conjectural value of the unobservable rv’s ©%;. This problem is called
classification without teaching or clusterization problem. Clusterization problem for
fiata .Of such a kind frequently occurs in social and medical studies. A typical example
'S, given r subpopulations, to classify them according to a certain feature on a basis
of some agregated characteristic K; (total number of jobless days and accidents,
Number of infected/recovered/new-born individuals, ect.) and the size N; of j-th
Subpopulation, ji=1,...,r
Let us give more explicit description of the model. Denote

) & PN =n|9,=6), n=1,2..., i=l...m

\vtl‘e assume that the conditional disribution of K; given N; and @; is that of Poisson
ith the parametr 6, N;, i.e.

P{Kj=k|Nj=n,0j=0,}=l'lk(9;n), i=1,...,m,

:‘;*]cre (L) = A*e*/k!, k =0,1,.... Since rv’s ¥y, ..., 9, are unobservable,
S(Ki, Ny),..., (K,, N,) are iid sample from a finite mixture distribution

fle,n)y € piK; =k, N; =n)

m (l)
=Y pim@mTi(n), k=0.1,...,n=12,...
i=l
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The number of clusters m, the prameters 4, . . ., 6,,, and the probability distributions
(), ..., Cn(-) are supposed to be unknown.

Poisson mixture models naturally arise in applications [3, 4, 7, 9]. A pecuiiarity
of model (1) is that the mixture components include both the parametric IT,(6;n)
and the nonparametric I';(-) parts. Since the definition of the clusters is based on
the parameters 6, ..., 6, and we do not impose any condition on the probability
distributions I'y, ..., T, the latter can be treated as infinite-dimensional nuisance
parameters. The models of this type are called semiparametric [7].

In the paper we present a method for estimating the unknown parameters m, pi,
6;, I'i(-), i = 1,...,m, and clustering the data. The method is based on the EM
algorithm and nonparametric estimation theory, and follows main points of papers
[5,11]. It also may be viewed as an approximation to the nonparametric maximum
likelihood estimator (MLE) of the mixture distribution [2, 6, 7, 10]. We refer to
the review paper of Bohning [2] for a description of other algorithms for calculating
nonparametric MLE and further references. It should be noted that all of them are
rather computer-intensive.

In section 2, necessary notation is introduced and some theoretical background is
given. Section 3 is devoted to the description of the sequential estimation method.
In the last section an application of the method to real count data is presented.

2. THEORETICAL BACKGROUND

The model under consideration is a special case of the following general frame-
work. Let X, ..., X, be independent observations where X ; has a distribution den-
sity (-, Y;) with respect to o -finite measure 4, j = 1,.. ., r. Suppose the parameters
Yy, ..., Y, are themselves iid rv’s with a common distribution G. If Yy,..., Y, are
unobservable, X1, ..., X, is iid sample from a mixture density

¥(x,G) "-if/w(x, Y)G(dy). @

Model (1) is obtained from (2) by the following substitutions: wx is a counting measure

on No x N,NE(1,2,..}, No ¥ Nu {0},

X; =K, N), Yi=0,N), j=1,...r 3
fle,n)=f(x)=y¢(x,G), GUb,th=pTi@®), i=1,....m, &
Y, y) =¥k n, 6,0 % M 0n)xm @), (5

where x = (k,n) e Ng xN, y = (6,1) € [a,b] x N, 0 < a < b, and y(-) denote’
an indicator function of the set A.

For the sake of convenience, we assign a weight w; to each observation X/, J ’
I,...,r. We assume w; = 1/r, if the clusterization problem of the subpopulations '
considered, and w; = N;/ Y, Ni, when clustering the individuals. This enables ¢
to treat both cases in an unified way.
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Bayes classification rule. For brevity, put

firtk,n) = fo,(xIG) & P{K; =k, N; = n|9; = 6;}} = e(@m)T:(n)

) (6)

= ¥ (x, xie1() GUBi), )/ i i=1l....m (j=1,...,71).
According to the Bayes formula, posterior probabilities 7;(x) that, given X; = x,
the cluster number of the j-th observation X; equals i (i.e. ¥; = 6;), is given by

E P, = 6,1 X; = x} = pi foy (0)/f (%), @)

mi(x) = mi(x|G)
i=1,...,m, j =1,...,r. The minimal classification error is obtained by Bayes
classification rule: assign the observation X; to the i*-th cluster if

i* = arg max{m;(X;)} = argmax{p; f;(X;)}, Jj= 1,...,r.

1<igm 1<i<m

Thus, the clusterization problem reduces to that of estimation of the posterior prob-
abilities. We estimate 77;(-) by the maximum likelihood method.

Nonparametric maximum likelihood estimator (NMLE). Let G be the family
of all probability distributions on [a, b] x N endowed with the vague topology (see,
e.g. [10, p. 149]). Define

Gm ={G € G: |supp(G(-,N)| <m}, meN.

|A| denotes the number of elements of the set A. Note that both ¢ and G, are

relatively compact. Let us write log-likelihood function for data (3) and mixture
model (2)

LG) E Y nW(X;,GHw;, Geg.
Jj=1

Definition 1. A probability distribution G € G is called NMLE iff

L(6) = max L(G). (8)

If the set G in (8) is replaced by a close proper subset G of G, then G € G is called
'estricted NMLE.

Denote by G,, restricted NMLE for G = Gp.

Definition 2. Mixture model (2) is identifiable on G (Gn) iff ¥ (-, G|) = ¥ (-, G2)
mod(n), Gy, G, € G (Gn), implies G| = G,.

For nonidentifiable models it is impossible to estimate G € G (G») consistently
(r— 00).
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PROPOSITION 1. The model defined by (1), (2), (4), and (5) is identifiable. The
NMLE G for G € G is strongly consistent and the same holds for Gm provided
G € Gn.

Since Poisson mixtures are identifiable, so are the mixtures with kernel function
(5). Consequently, from [10, theorem 5.5] we conclude that G is strongly consistent.
Moreover, it follows from [7] that G is a discrete distribution with the support
consisting of r or fewer points. Hence G = G,.

Strong consistency of restricted NMLE for rather general mixture models have
been prooved in [6]. Unfortunatelly, conditions imposed on a mixture kernel in [6]
are not satisfied in our case. However, a special form of our model (1)-(5) enables
us to overcome this obstacle.

Remark. 1t is worth noting that consistency result as stated in Proposition 1 usually
is not of great value for practice. The point is that rather frequently N;, j =1,...,r,
are of the same order or even much greater than r, say, the latter being fixed. Thus,
asymptotic results of a different kind are needed. We reffer to an example of real
data in the last section. .

The EM algorithm. For computing NMLE G we apply the EM algorithm [1, 2.
4, 9]. The EM algorithm is an iterative procedure which, given an initial value of the
parameter, calculates a new improved value that increases the log-likelihood function:
The parameter values obtained converge to a stationary point. If the initial value is
close enough to the MLE the EM algorithm converges to the MLE. Each iteration
of the EM algorithm cosists of two steps: expectation (E) and maximization (M)-
In the E-step, the posterior probabilities 7; (x | G©®) for a current parameter value
G© are computed. In the M-step a new value G of G maximizing the conditional
expectation of log-likelihood for the complete data (X;, 9;), j = 1,...,r, given the
incomplete data X;, j =1,...,r (see (3)),

r m
L(G | G E Y3 Il (X160 "m (X, 1G) w;, G €,
j=1i=1

is found (see (6) and (7)). The parameter value GO obtained is a current value in
the next iteration of the EM algorithm. The process is repeated untill convergence:

Suppose G© € G,,. Then solution of the maximization problem
L(G | G(O)) — max

GeGm
is given by
supp (G, N)) = (67, ..., 40},
r r
9’.(1) = Z K,' T (XJ | G(O)) wj/ ZNI i (XI | G(O)) wj, (9)

GO (16", n}) Zn’, i1GO) xvymwi,  i=1,...,m.
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As pointed out above, choosing good initial values are very important for success-
ful performance of the EM algorithm. Since I, (1) attains its maximum value when
k = [A] ([A] denotes an integer part of the real number A), it is natural to hope that

the unknown parameters 6;, i =1, ..., m, are close to modes of the rv n def Ki/N,.
Although this is not the case in general, the modes of »n, as we will see in the next
section, can serve as a basis for a sequential procedure for estimation and cluster
separation.

3. SEQUENTIAL ESTIMATING METHOD

Suppose we have found Gl € G, 1 > 1, and want to increase the number of
components by one. In other words, we are seeking for restricted NMLE Gis1 € Gar.
To apply the EM algorithm (9) we need initial estimates for 6,1 and G({6,+1}, -)-

Initial values for the EM algorithm. Let us first describe a probability ’density’
of n and its nonparametric estimator. For a <t < b set

m

g(n) & Y nfmlny =3 n Y piTlum@mTi(n) ~ P(K;/N; € dt}/d1, (10)

n=1 n=1 i=l

U=1,....r. A nonparametric estimate g of g is obtained by exploiting standard
Smoothing technique (see, e.g. [5,9] and references therein), although the kernel
Mk(X) is not standard:

80 &S [H M (H K = X0 (KiD) + xo KD xton@N) | Ny,

j=1

H being a smoothing parameter. Preliminary practical investigatios aprove the choice
H=cyr?5 41, g € 02,21

.Let us introduce an auxiliary model f; with ! components and an additional
uniform component f(g. Set

1 ) ]
Jitk,m) &Y py(MeOim) + ——L3 )T = 3 pi firkm), - (1)
i=1 =0

(1= po)(b—a)
] ]
f (k, déf 1 . — G([av b]v {n}) —
Q. n) n(1 — po)(b—a) ;p,r,(n) n(1—po)(b—a)’ ;p' .

Th? component f, can be thought of as a noise’ or ’background’ cluster. When
®Simating the mixture distribution G sequentially, it represents a part of the data
:‘"der consideration ill fitted by the current model ¥ (-, f}l) with [ components. Thus,

¢ mOflel obtained is more statistically and computationally stable. Furthermore, our
Model is well defined for ! = 0 also.
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Similarly as in (10), we obtain probability 'density’ of 7 corresponding to model

(1

] !
g =g@IG) E Y n Y pillym@mTi(n) + po/(b—a),  a<1<b.

n=1 i=1

Substitution of restricted NMLE G; of G for auxiliary model (11) into this expression
gives an estimate g;(-) def g,(-lé,) for g;. The initial value é,(g)l for é,+1 is calculated
by (successively) applying one of the following formulas (see [5] for more detailed
description)

9 = arg max {§(1)/&1(1)), (12)
ast<h

é,(+0), = arg max {é(t)'/z — g,(t)'/z}, (13)
ast<h

é,(f)l = arg<max HOE g0} (14)
a<t<

The distribution é,“fl is evaluated by making use of k-means type method. Namely.

GU8Y ) =vGi(18},), 6 € supp (Gi(-, N)),

20 140
Gl(-\‘-)l({el(-i-)l’n}) =Y 2 :w,-,
jed

where y is a normalizing factor, J is the subset of indeces j € {1, ..., r} such that
N; =n and éff’l is the closest point to K;/N; among {é,(g)l} U supp (é,(-, N)). ‘
Stopping rule. Since it is presupposed that m is much less than r, a stopping
criteria for the successive increase of the number of components / in the current
estimate (-, G,) of mixture model (1)<(5) is needed. Interesting suggestions and
results relative to this problem can be found in [6-8, 11]. However, they are t00
complex for handling or not directly applicable to our setting. Our criteria is based
on a measure of closeness between two different values of the parameter 6. Define

A(ty, 1) o (t — 1)*/(t /My + 12/ My)

A def r A -
where 1, # 1, 11,12 € supp (G141 (- N)), and M;  7_ N;Gryi ({1, NjD wj, i =

1, 2. The corresponding components are joined if A(é,-, é,-/) <C, C =1, say. T}}e
parameters of the resulting component are calculated from that of being joined 1n
a natural way. The sequential estimating procedure stops if all three initial esti-
mation methods (12)—(14) fails to find a new value of the parameter 6 that would
not be joined, after the application of the EM algorithm, with the previous values

supp (é;(-, N)).
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4. APPLICATIONS

The method proposed has been applied to real data. The data we deal with consist
of medical observations of degeneracy frequency of a certain type among new-born
children in Lithuania during 1994. N; (K;) signifies the total number of new-born
children (respectively, the number of degenerate among them) in the j-th district
during the period, j = 1,...,r, the number of the districts r = 46. The values of
N (K;) range from 27 to 7128 (respectively, from 0 to 227). The parameter values
of four clusters found are presented below:

Nr 1 2 3 4
pi 0.02174 0.59833 0.23182 0.14811
6; 0.00163 0.01890 0.03042 0.04872

The performance of the procedure was also tested on simulated data. The preliminary
results are encouraging. Detailed description of these results as well as extended
Inerpretation and discussion of applications to real data will be published elsewhere.
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Semiparametrinis modelis diskretiy duomeny klasterizavimui ir jo taikymas medicininiams
duomenims

M. Radavicius, J. SuSinskas

Darbe pasitlyti Puasono semiparametriniai miSiniai sudaro pladia klase statistiniy modeliu, aprs-
3anliy diskreCiy duomeny klasifikavimo (klasterizacijos) uZdavinj. Klasifikavimo taisyklé remiasi
maiSymo skirstinio neparametriniu maksimalaus tikétinumo jver&iu. Aptariamos jo savybes if
pateikiama iteratyvi jo apskaiiavimo procediira, kuri pagrista neparametriniy metody ir EM algo-
ritmo deriniu. Minéta procedira pritaikyta realiems duomenims: Lietuvos rajony klasifikavimui
pagal 1994 mety naujagimiy i§sigimimy tikimybe.



