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Synchronizing influence of identical noise in chaotic
systems
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INTRODUCTION

Often solutions of the nonlinear dynamical systems are very sensitive to the initial
conditions and unpredictable, i.e. the systems are chaotic. It is said that dynamical
model is well-posed if there exists a unique solution uniformly depending on initial
conditions. Unfortunately in today’s nonlinear science applications we observe a lot
of phenomena exhibiting an apparent random behavior or deterministic chaos. As ?
simple example one can recall a well-known probabilistic model of a coin, initially
placed on its rim. A slight touch is sufficient to determine the falling side of a coin,
i.e. we deal with evolution, extremely sensitive to initial state. The recent studies
[1, 2] have shown that deterministic chaos is by no means exceptional but a typical
property of many nonlinear systems in physics, meteorology, economics and other
fields of science.

To illustrate possible properties of such systems let us consider a simple discreté
time problem — the so-called logistic map

Xnp1 =rx,(1—x,), n=1,2,..., xp€]0,]1],

where r is a parameter. Logistic map comes from continuous time logistic differential
equation arising in some models of mathematical biology. In the case r = 4 the
solution of above recurrence relations can be written explicitly:

xn = sin® (2" arcsin /xo) .

From this expression one can easily conclude unstability to initial value xo. )
It becomes practically impossible to predict the long-time behavior of chaoti¢
systems, because in practice one can only fix their initial conditions with finite ac-
curacy, and errors increase exponentially fast. Trying to solve such a system on ?
computer, the results depends for longer and longer times on more and more dig!'s
in the irrational numbers which represents the initial conditions. Since the digits "
irrational numbers are irregularly distributed, the evolution becomes chaotic. ‘
It might be expected that when turning on additional random perturbations n
such models their behavior becomes even “more chaotic”. However, a transitio”
from chaotic to nonchaotic behavior in an ensemble (set) of particles (solutionS)
with different initial conditions bounded in a fixed external potential and driven by
an identical sequence of random forces (perturbations) was observed by Fahy and
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Hamann [3]. It has been shown that the ensemble of trajectories in such a case may
become identical when t — oo. The system becomes not chaotic: the trajectories
are independent on the initial conditions. The similar effects have been observed in
the different systems as well [2, 3] and have resulted to the discussion concerning
the origin and causality of such nonchaotic behavior [2, 4].

Moreover, the observed effect resembles a phase transition but does not depend
crucially on the dimension of the space in which the particles move. This phe-
nomenon has some importance for Monte Carlo simulations and can influence on the
clustering of particles process.

Here we consider nonlinear second order differential equation which, for some
parameters values, is unstable according to initial conditions. Following the paper
by Fahy and Hamann [3] we introduce some additional stochastics to govern de-
terministic chaos arising from our differential model. Physically such perturbations
correspond to periodical shaking (identical noise) of an ensemble of trajectories mov-
ing according to the nonlinear differential rule. We generalize [4] investigating more
complex model, which takes into the account the influence of friction and external
force, described by the terms yx’ and asint in our equation.
~ Our theoretical analysis is based on the mapping form of equations of motion
f_0r the distance between the particles and the difference ot the velocity of the par-
ticles while numerical calculations are performed according to the derived mapping
¢quations as well as directly calculating the system’s trajectories and the Lyapunov
exponents (LE). The averaged LE (or Kolmogorov—Sinai entropy, since we deal with
one-dimensional map) is the most important measure by which the “degree of chaos”
In the system can be evaluated. From the analysis of LE as well as from direct cal-
Culations in the phase-space (x, x’) we conclude possibility of synchronization in
the initially chaotic system. Sufficiently frequent perturbation makes the system not
chaotic: the different trajectories become identical when ¢ — 00, i.e. independent on
the initial conditions.

MATHEMATICAL MODEL OF DYNAMICAL CHAOS AFFECTED BY
NOISE

We consider a Cauchy problem for the second order ordinary differential equation:

d’x 1 dV(x) dx Lasing. £ 0 -

= — y— 4 asint, ,

dr? m dx 4 dt
x(0) = xo, (2)
dx 3
— = vy, 3
dt |,

(thefe m,a and y > 0 are real coefficients. Problem (1)-(3) describes a particle
'mass m moving with friction coefficient y in the potential V (x) and affected by
Periodical external force « sin¢. Initial values xo and vy represent starting coordinate

Il?d velocity, respectively. Model (1)-(3) comes from the well-known 2-nd Newton
(W.
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For simplicity let m = 1. We consider the case of Duffing potential
Vx)=x*-x%
Then Eq. (1) appears in the following form:

2
%=2x—4x3—y§+asint, t >0, 4)

Note that already when y = a = 0 initial values xg = vy = 0 are unstable. In this
case (4), (2), (3) satisfies a class of functions x(¢) = sech(+/2¢ +arsech Xo) obviously
not converging (uniformly) to the trivial solution x(t) = 0, when xy — 0.

From general theory of differential equations follows, that once initial conditions
(2), (3) are defined, there exists a unique solution of Eq. (4) (Cauchy-Kovalevskaya
theorem). We choose initial values xp and vg randomly, namely, we generate 2 sets
of volume N from a standard normal distribution

X0, Vo N(O, 1).

In the above described way we construct a family of the solutions of Eq. (4). We
extend model (4), (2), (3) by adding periodical perturbation

x,/,ew(tk) = ax,,,[d(tk) + Vrana(t), O0<a <1, 1 =kr, ®)

where vruna (%), k = 1, 2, ... are random quantities. Note, that v,,,4(zx) depends on
the perturbation moment #; but not on the element of the family of the solutions. The
simplest and the most natural way is to choose sequence v,qq(f;) from a standard
normal distribution N (0, 1). Note also, that the case of perturbation period T =
corresponds to the evolution without perturbation (5), i.e. governed exclusively by
Eq. (4). -

In Fig. 1 by direct calculations in the phase space (x, x’) we observe a transition
from the actual chaotic dynamics for large 7 to the nonchaotic common for the whole
family of possible solutions evolution with the decrease of 7. For the non perturbed
(t = 00) family of Eq. (4) solutions there is no transition to the common trajectory:
for smaller T = 0.4 the clustering process of particles with different initial conditions
is relatively slow while for sufficiently small © = 0.2 a collapse to the common
trajectory at the time moment + = 100 is evident. See Fig. 2 for the generalized
result in the terms of Lyapunov exponents with the same parameters values.

MAPPING EQUATIONS AND LYAPUNOV EXPONENTS

Theoretically a transition from chaotic to nonchaotic behavior can be detected frorll?
analysis of two neighboring solutions x(¢) and x(")(¢) initially at points xo and X

with starting derivatives vy and vm, respectively. We denote v = dx/dt. '["he
convergence of two solutions to the single final evolution depends on the propagation
with a time of the small variances Ax = x() — x and Av = v — y. From the



Synchronizing influence of identical noise in chaotic systems 271

r=oc  25h r=04 (5 =02 7.
t=2 t=2 t=2 / :
4 .
o —+ by 5
bx § 5% 5 r L
.2(4 . -0 - -74
’ / U
T=o00 1G4 r=04 54 r=02 &4
=90 t=20 t=20
N
l
} - — 1o
-5 5% .5 5
104 51 54
z! z! EY
T=o00 54 =04 54 T=0.2 51-
t =100 t =100 t =100
- n o, —+ ;
5% .5 57 .5 57
-54 =54

Figure 1, Evolution in the phase-space (x, x’) in the case y = 0.07, « =5, o = 0.8 and N = 5000.

f . . .

i:.”_"al expression x = x(xg, vk, t) and v = v(xy, v, t) of the Eq. (4) solution with

: hal conditions x(t) = x¢ and v(f) = vk, f = kT we obtain the mapping form of
¢ equations of motion for Ax and Av:

A A
( x"*') =T(a, T, X1, uk)(Aik), k=0,1,..., (6)
k

Avgyy
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where T is a matrix of the form

X(xe, v, 1) x (g, Uk, 1)
o

T= Txx aTxv — Xk Vg (7)
Tvx (XT,,,, U(Xk, Uk, t) av(xlm Uk, t) ’
Xk Uk

Matrix T elements 7., and T, satisfy the equation

d?T, dT,
dt; = Q2 - 12x*(t)T, - y—dti, n<t<ty, t=kt (8
and 1nitial conditions
Txx|1=1k =1, Txvll-_-;k = 0, (9)
dTJ =0, @ =1, (10
dt =1t dt 1=t
while JT JT
Tvx= d:X’ Tm)':'f- (][)

Further analysis is based on the general theory of the dynamics of systems rep-
resented as maps. For every step, when (5) perturbation is performed, we calculat
both eigenvalues u,((” and u,?) of the T matrix and evaluate the averaged Lyapuno

exponent or Kolmogorov-Sinai entropy of the system (4), (2), (3), (5)

I &K
A= lim - —lnmax”u,‘)ﬂ,luf’“. (12

k=0 ¥

A criterion for transition to chaotic behavior is A = (.

In Fig. 2 we see the dependence of the Lyapunov exponents A on perturbatio”
period . For the values of parameters corresponding to A > (), the system is chaoti
The negative Lyapunov exponents indicate to the nonchaotic evolution. Note, tb‘“
for & < I and sufficiently small t the Lyapunov exponent is negative, i.e. intensive

N W~

—

ol -0.99

;m(l

Figure 2. Lyapunov cxponents A vs the perturbation period t for evolution according to Eq. (4)
(5) with y = 0.07, « =5 and dilferent .
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identical noise (2) synchronizes chaotic system (1), while for & = 1 it is positive for
all 7

Comparisons of the threshold values . for transition to chaos according to Egs.
(6)(12) with those from the direct numerical simulations (see Fig. 1) indicate to
the fitness and usefulness of the method (6)—(12) for investigation of transition from
chaotic to nonchaotic behavior in randomly driven ensemble of systems bounded in
the fixed external potential with friction and external force.
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Identigko triuksmo sinchronizuojanti jtaka chaotinéms sistemoms
F. Ivanauskas, T. Meskauskas, B. Kaulakys

SFraipsnyjc nagrinéjamas deterministinio chaoso savybe pasiZymincios diferencialinés lygties spren-
fjmill Seimos peréjimas i3 chaotinio | nechaotinij elgesj ir sinchronizacija. Antros eilés diferencial-
Inés lygties, su nuo laiko priklausantiu potencialiu bei trinties jskaitymu, sprendiniai periodiskai
veikiami vienodo triuk¥mo. Analizuojama jy sinchronizacijos (nepriklausymo nuo pradiniy salygy)
gi\limybé. Sistemos chaoti§kumas tiriamas jvedus sutiesintas atvaizdZio lygtis ir Liapunovo rodik-
!IUS. Nustatomos kritinés sistemos parametry reik§més, kurioms stebima sinchronizuojanti triuk§mo
ltaka chaotinei sistemai bei Liapunovo rodikliy priklausomybé nuo iSorinio triuk§mo intensyvumo.



