On A-decomposition of probability measures in Hilbert spaces

F. Mišeikis (VU)

Let H be a real separable Hilbert space and

$$\xi_1, \xi_2, \ldots$$

be a sequence of independent H-valued random variables (i.H.r.v.), the following well-known result will be helpful.

KOLMOGOROV'S THREE-SERIES CRITERION. In order that the series

$$\sum_{n=1}^{\infty} \xi_n \tag{1}$$

converge (weakly), it is necessary that for any $\varepsilon > 0$ the three series

$$\sum_{n=1}^{\infty} \int_{\|x\| < \varepsilon} x \ d\nu_n(x), \tag{2}$$

$$\sum_{n=1}^{\infty} \int_{\|x\| < \varepsilon} \|x - \int_{\|y\| < \varepsilon} y \, d\nu_n(y) \| \, d\nu_n(x) \tag{3}$$

and

$$\sum_{n=1}^{\infty} \mathbf{P}\{\|\xi_n\| \geqslant \varepsilon\} \tag{4}$$

be convergent (here the probability measures v_n are the distributions of random variables ξ_n correspondingly), and it is sufficient that the series converge for at least one $\varepsilon > 0$.

We call a linear operator A an a-operator if for all $x \in H \|Ax\| = a\|x\|$. First we prove a following result:

THEOREM 1. Let $\{\xi_n\}$ be a sequence of i.H.r.v. and let $\xi_n \stackrel{L}{=} A_n \xi$ (,, $\stackrel{L}{=}$ " means that both sides have the same distribution), where ξ is H-valued random variable (H.r.v.), A_n are a_n -operators with the properties:

- i) $a_n > 0$, n = 1, 2, ...;
- ii) for some N $a_{n+1} \leq a_n$, when $n \geq N$;

374 F. Mišeikis

iii)
$$\sum_{n=1}^{\infty} a_n < \infty$$
.

In order that the series (1) converge it is necessary that for any $\varepsilon > 0$ the series

$$\sum_{j=N+1}^{\infty} j \mathbf{P} \{ \varepsilon a_{j-1}^{-1} \leqslant \|\xi\| < \varepsilon a_{j}^{-1} \}$$
 (5)

be convergent, and sufficient that the series (5) converge for at least one $\varepsilon > 0$.

Proof. Necessity. If the series (1) converges, then also the series (4) converges and we have

$$\sum_{n=1}^{\infty} \mathbf{P}\{\|\xi_n\| > \varepsilon\} = \sum_{n=1}^{\infty} \mathbf{P}\{\|\xi\| > \varepsilon a_n^{-1}\}$$

$$= \sum_{n=1}^{N} \mathbf{P}\{\|\xi\| > \varepsilon a_n^{-1}\} + \sum_{n=N+1}^{\infty} \sum_{j=n+1}^{\infty} \mathbf{P}\{\varepsilon a_{j-1}^{-1} < \|\xi\| \le \varepsilon a_j^{-1}\}$$

$$= \sum_{n=1}^{\infty} \mathbf{P}\{\|\xi\| > \varepsilon a_n^{-1}\} + \sum_{j=N+1}^{\infty} j \mathbf{P}\{\varepsilon a_{j-1}^{-1} < \|\xi\| \le \varepsilon a_j^{-1}\}$$

$$- N \mathbf{P}\{\|\xi\| > \varepsilon a_N^{-1}\}.$$
(6)

Sufficiency. Let the series (5) be convergent. By the equations (6) we have that the series (4) is also convergent. We can prove convergence of the series (2) as follows:

$$\left\| \sum_{n=1}^{\infty} \int_{\|x\| < 1} x \, d\nu_n(x) \right\| \leq \sum_{n=1}^{\infty} \int_{\|x\| < 1} \|x\| \, d\nu_n(x)$$

$$= \sum_{n=1}^{N} a_n \int_{\|y\| < a_n^{-1}} \|y\| \, d\nu(y) + \sum_{n=N+1}^{\infty} a_n \int_{\|y\| < a_N^{-1}} \|y\| \, d\nu(y)$$

$$+ \sum_{n=N+1}^{\infty} a_n \sum_{j=N+1}^{n} \int_{a_{j-1}^{-1} \leq \|y\| < a_j^{-1}} \|y\| \, d\nu(y)$$

$$= C_1 + \sum_{j=N+1}^{\infty} \sum_{n=j}^{\infty} a_n \int_{a_j^{-1} \leq \|y\| < a_j^{-1}} \|y\| d\nu(y)$$

$$\leq C_1 + C_2 \sum_{j=N+1}^{\infty} n \mathbf{P} \{a_{j-1}^{-1} \leq \|\xi\| < a_j^{-1} \},$$

here C_1 and C_2 are constants and probability measure ν is the distribution of the H.r.v. ξ .

Because of

$$\int_{\|x\|<1} \left\| x - \int_{\|y\|<1} y \ d\nu_n(y) \right\| d\nu_n(x) \leqslant 2 \int_{\|x\|<1} \|x\| \ d\nu_n(x)$$

we have also convergence of the series (3). This completes the proof. Because of the inequalities

$$\sum_{j=1}^{\infty} j \mathbf{P} \{ \varepsilon (j-1)^{\alpha} \leq \|\xi\| < \varepsilon j^{\alpha} \} - 1 \leq E \|\xi\|^{\frac{1}{\alpha}} \leq \sum_{j=1}^{\infty} j \mathbf{P} \{ \varepsilon (j-1)^{\alpha} \leq \|\xi\| < \varepsilon j^{\alpha} \}$$

we have this corollary:

COROLLARY 1. Let $\{\xi_n\}$ be a sequence of i.H.r.v, and let $\xi_n \stackrel{L}{=} A_n \xi$, where operators A_n are the $n^{-\alpha}$ -operators for $\alpha > 1$. Then the series (1) converges if and only if $E \|\xi\|^{\frac{1}{\alpha}} < \infty$.

If a probability measure μ is the distribution of a H.r.v. η and A is an invertible linear operator, by $A\mu$ we denote the distribution of the H.r.v. $A\eta$. If η and ξ are i. H.r.v. and for some linear operator A we have the equation

$$\eta \stackrel{L}{=} A\eta + \xi,$$

we have the decomposition

$$\mu = A\mu * \nu \tag{7}$$

of the probability measure μ . In this case we will say that probability measure μ is A-decomposable.

THEOREM 2. Let A be a-operator with 0 < a < 1. A probability measure ν can be a component in A-decomposition (7) of some probability measure μ if and only if

$$\int_{\|x\|>1} \log \|x\| \ d\nu(x) < \infty. \tag{8}$$

Proof. It is easy to see that the equation (7) is equivalent to the equation

$$\eta \stackrel{L}{=} \sum_{n=1}^{\infty} \xi_n, \tag{9}$$

where $\{\xi_n\}$ is a sequence of i.H.r.v., $\xi_n \stackrel{L}{=} A^{n-1}\xi$ ($\xi_1 \stackrel{L}{=} \xi$). Because A^{n-1} are the a^{n-1} -operators, by Theorem 1 we have that the series (9) converges if and only if for $\varepsilon = 1$ converges the series (5).

376 F. Mišeikis

Necessity of the condition (8) we can get as follows:

$$\int_{\|x\|>1} \log \|x\| \ d\nu(x) = \sum_{n=1}^{\infty} \int_{a^{-(n-1)} \le \|x\| < a^{-n}} \log \|x\| \ d\nu(x)$$

$$\le |\log a| \sum_{n=1}^{\infty} n \mathbf{P} \{a^{-(n-1)} \le \|x\| < a^{-n} \}.$$

With the help of the following inequality we have *sufficiency*:

$$\int_{\|x\|>1} \log \|x\| \ d\nu(x) \geqslant |\log a| \left(\sum_{n=1}^{\infty} n \mathbf{P} \{a^{-(n-1)} \leqslant \|\xi\| < a^{-n} \} - 1 \right).$$

This completes the proof.

It follows that under condition (8) for all a-operators A with 0 < a < 1 there exists a probability measure μ such that equation (7) is true.

Now we will consider only those probability measures ν in the decomposition (7) which are infinitely divisible. Our purpose is to describe them. We will show a more general result, from which the desirable result will follow.

As we know a H.r.v. ξ is infinitely divisible if and only if its characteristic functional (ch.f.) f(y) is of the form

$$f(y) = \exp\left\{i(x_0, y) - \frac{1}{2}(Sy, y) + \int \left[e^{i(x, y)} - 1 - \frac{i(x, y)}{1 + \|x\|^2}\right] dM(x)\right\}, \quad (10)$$

where (u, v), $u \in H$, $v \in H$ denote the inner product between u and v, x_0 is a fixed element of H, S is an S-operator and M is a σ -finite measure with finite mass outside every neighborhood of the origin and

$$\int_{\|x\|<1}\|x\|^2\ dM(x)<\infty.$$

This representation is unique.

THEOREM 3. Let conditions of Theorem 1 be satisfied and H.r.v. ξ is infinitely divisible with the ch.f. (10). In order that the series (1) converge it is necessary and sufficient that the series

$$\sum_{n=N+1}^{\infty} nM \left(a_{n-1}^{-1} < ||y|| \leqslant a_n^{-1} \right)$$

Proof. If the series (1) is convergent then its sum also will be infinitely divisible with ch.f.

$$g(y) = \exp\left\{i(x_1, y) - \frac{1}{2}(S_1 y, y) + \int \left[e^{i(x, y)} - 1 - \frac{i(x, y)}{1 + ||x||^2}\right] dM_1(x)\right\},\,$$

where $x_1 \in H$, $S_1 = \sum_{n=1}^{\infty} A_n^* S A_n$,

$$M_1(B) = \sum_{n=1}^{\infty} M(A_n^{*-1}B)$$
 (11)

for any Borel set B which does not include some neighborhood of the origin (here A_n^* are conjugate operators to linear operators A_n , A_n^{*-1} are inverse operators to linear operators A_n^*). In a special case there must be $M_1(\|x\| > 1) < \infty$ and we have for $\varepsilon > 0$

$$\int_{\|x\|>\varepsilon} dM_{1}(x) = \sum_{n=1}^{\infty} \int_{\|y\|>\varepsilon a_{n}^{-1}} dM(y)$$

$$= \sum_{n=1}^{N} \int_{\|y\|>\varepsilon a_{n}^{-1}} dM(y) + \sum_{n=N+1}^{\infty} \sum_{j=n}^{\infty} \int_{\varepsilon a_{j-1}^{-1} < \|y\| \leqslant \varepsilon a_{n}^{-1}} dM(y) \quad (12)$$

$$= C + \sum_{j=N+1}^{\infty} jM(\varepsilon a_{j-1}^{-1} < \|y\| \leqslant \varepsilon a_{j}^{-1}),$$

here C is constant. By virtue of the equation (11) we have the necessity.

Sufficiency. By equations (11) and (12) we have that M_1 is a σ -finite measure with finite mass outside every neighborhood of the origin. So it is sufficient to show the convergence of the integral

$$I = \int_{\|x\| < 1} \|x\|^2 dM_1(x).$$

This follows from the next inequalities:

$$I \leq \sum_{n=1}^{\infty} \int_{\|A_n^* x\| \leq 1} \|A_n^* x\|^2 dM(x)$$

$$= \sum_{n=1}^{N} a_n^2 \int_{\|x\| \leq a_n^{-1}} \|x\|^2 dM(x) + \sum_{n=N+1}^{\infty} a_n^2 \int_{\|x\| \leq a_N^{-1}} \|x\|^2 dM(x)$$

$$+ \sum_{n=N+1}^{\infty} a_n^2 \sum_{j=N+1}^{n} \int_{\substack{a_{j-1}^{-1} < ||y|| \leqslant a_j^{-1}}} ||y||^2 dM(y)$$

$$= C_1 + \sum_{j=N+1}^{\infty} \sum_{n=j}^{\infty} a_n^2 \int_{\substack{a_{j-1}^{-1} < ||y|| \leqslant a_j^{-1}}} ||y||^2 dM(y)$$

$$\leqslant C_1 + C_2 \sum_{j=N+1}^{\infty} nM(a_{j-1}^{-1} < ||y|| \leqslant a_j^{-1}),$$

here C_1 and C_2 are constants.

Theorem is proved.

V. M. Kruglov has proved this nice result ([2]):

THEOREM. Let there exists a constant $C = C(\varphi)$ such, that for all $x, y \in H$ inequality

$$\varphi(x+y) \leqslant C\varphi(x)\varphi(y)$$

is true. The integral

$$\int_{\mathcal{U}} \varphi(x) \ d\nu(x)$$

is finite if and only if the integral

$$\int\limits_{\|x\|>\gamma} \varphi(x) \ dM(x)$$

is finite for some $\gamma > 0$.

From the Corollary 1 and from the Theorem 2 by using Kruglov's result or by using Theorem 3 we can conclude the next corollary's.

COROLLARY 2. Let conditions of Corollary 1 be satisfied and H.r.v. ξ is infinitely divisible with the ch.f. (10). Then the series (1) converge if and only if

$$\int_{\|x\|>1} \|x\|^{\frac{1}{\alpha}} dM(x) < \infty.$$

COROLLARY 3. Let conditions of Theorem 2 be satisfied and probability measure v is the distribution of an infinitely divisible H.r.v. ξ with the ch.f. (10). The probability measure v can be a component in A-decomposition (7) of some probability measure μ if and only if

$$\int_{\|x\| > 1} \log \|x\| \ dM(x) < \infty. \tag{13}$$

It follows that under condition (13) for all a-operators A with 0 < a < 1 there exists a probability measure μ such that equation (7) is true.

REFERENCES

- [1] A. I. Il'inskii, c-decomposability of characteristic function, Lith. Math. J., 18(4) (1978), 481-485.
- [2] В. М. Круглов, Характеризация одного класса безгранично делимых распределений в гильбертовом пространтстве, Математические заметки, 16(5) (1974), 777-782.
- [3] F. F. Mišeikis, On certain classes of limit distributions, Lith. Math. J., 12(4) (1972), 133-152.

Apie tikimybinių matų Hilberto erdvėse A-skaidomuma

F. Mišeikis

Irodoma, jog tikimybinis matas ν yra kurio nors tikimybinio mato μ A-skaidinio (7) komponentė tada ir tik tada kai konverguoja integralas (8). Čia tiesinis operatorius A turi savybę: su visais x iš Hilberto erdvės ||Ax|| = a||x|| ir 0 < a < 1.