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Annotation. This paper estimates carbon emissions from energy consumption in 30 Chinese 

provinces using the IPCC methodology based on eight types of energy consumption data spanning 

from 2005 to 2018. Spatial autocorrelation analysis is applied to investigate changes in spatial 

patterns, while the Geographically Weighted Regression (GWR) model is employed to assess the 

factors influencing carbon emissions in each province. Three principal findings emerge from the 

analysis: first, a significant spatial dependency among carbon emissions is observed across the 

provinces. Provinces with high emissions tend to be geographically clustered with others exhibiting 

similar levels, forming distinct high-high and low-low agglomeration patterns. However, this spatial 

dependency has been weakening over time. Second, carbon emissions display significant local 

spatial clustering, with each province exhibiting unique spatial heterogeneity. Finally, the economic 

conditions, technological progress, and energy structures vary considerably among provinces leading 

to differentiated impacts on carbon emissions. Factors such as economic growth, population size and 

energy structure generally contribute to the rise in carbon emissions, 

Keywords: carbon emissions, province-level, spatial pattern, influencing factors. 

JEL classification: C23, O23, Q52, Q56, Q58. 

 

Introduction 

Energy is one of the critical elements of national development. The use of fossil fuels inevitably results in 
the emission of large amounts of greenhouse gases, leading to a series of environmental issues. China, 
undergoing rapid industrialisation and urbanisation, has become a major consumer of energy and an 
emitter of carbon globally. In this context, the spatialisation of CO2 emissions is essential for examining 
the spatial patterns of emissions, which provides the foundational data necessary for reducing CO2 
emissions through spatial pattern optimisation or reconstruction. 

To accelerate and improve efforts in reducing CO2 emissions, the analysis of emissions across different 
sectors in China has garnered significant academic attention. This paper investigates the distribution 
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characteristics of energy-related CO2 emissions across various regions to facilitate the precise 
implementation of reduction measures. Precisely, carbon emissions from energy consumption in 
Chinese provinces from 2005 to 2018 are calculated. The emission patterns and spatial relationships of 
each province are examined, and the factors influencing these emissions are explored. Ultimately, this 
analysis serves as a valuable reference for the development of effective and reasonable emission 
reduction strategies. 

In recent years, global initiatives advocating for emission reduction and energy conservation have 
significantly increased the focus on carbon emissions. Both domestic and international researchers have 
explored this topic from various perspectives. The existing literature highlights three key areas of focus: 
the accounting of carbon emissions, the factors influencing emissions and their economic correlations 
and the spatial patterns as well as evolutionary characteristics of CO2 emissions. 

Simultaneously, recent analyses of energy-related CO2 emissions have concentrated on three main 
areas: calculating emissions, examining the relationship between CO2 emissions and economic growth 
and identifying influencing factors. The predominant method for estimating energy-related carbon 
emissions, particularly those from fossil fuels and their derivatives, follows the IPCC guidelines (Zhang, 
2020; Zhou et al., 2019; Liu et al., 2016). Research consistently shows a positive correlation between 
energy CO2 emissions and economic growth (Ang, 2008; Lin et al., 2016; Zheng, Liu, 2011). Moreover, 
extensive academic work has identified key determinants of energy consumption and CO2 emissions, 
including consumption patterns, lifestyle, urbanisation, population, and economic and technological 
development Among these, the scale of the economy has been found to exert the most significant 
influence on CO2 emission fluctuations (Lin et al., 2016; Cheng et al., 2014; Jiang, 2011). 

1. Literature Review 

In the existing literature, factors influencing CO2 emissions have garnered significant attention. For 
instance, Li et al. (2011) highlighted that China’s GDP and industrial sector are the most prominent 
drivers of CO2 emissions. Similarly, Pao et al. (2010) reported that energy consumption significantly 
impacts CO2 emissions under the Environmental Kuznets Curve (EKC) hypothesis. In a study of twelve 
Middle Eastern economies, Al-Mulali (2012) confirmed that foreign direct investment (FDI) and primary 
energy consumption are key determinants of emissions. Andreoni et al. (2016) and Xiao et al. (2017) 
reached similar conclusions in their respective studies. Likewise, Wang et al. (2013) argued that various 
factors, including per capita GDP, urbanisation and population, are correlated with CO2 emissions in 
China. Additionally, Jayanthakumaran et al. (2012) assessed the short- and long-term relationships 
between per capita income, structural changes, energy consumption, and carbon emissions in India and 
China. Ang et al. (1998) explored the factors driving changes in energy demand and carbon emissions 
from the perspective of China, Korea and Singapore. 

In the context of spatial effects, Burnett (2013) investigated the influence of economic activities on state-
level emissions in the US. Using a similar approach, Zhao et al. (2014) examined the mechanisms 
influencing carbon emissions at the provincial level in China, finding that population density and per 
capita GDP growth can somewhat reduce carbon emission intensities. Wang et al. (2015) identified 
economic development as the most significant factor driving the increase in carbon emissions, with 
energy structure being the second most prominent factor in China. While economic growth is the primary 
factor influencing carbon emissions, national strategies have also altered China’s carbon emission 
patterns, with carbon intensity playing an increasingly important role (Pan et al., 2018). Wang et al. (2018) 
studied the effects of energy consumption, urbanisation and economic growth on carbon emissions, 
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suggesting that income levels and development stages are critical considerations for policymakers 
aiming to reduce carbon emissions. In line with this, Xu et al. (2014) identified energy structure and 
population size as equally essential factors influencing energy-related CO2 emissions. Timmons et al. 
(2016) confirmed that population size directly and indirectly impacts CO2 emissions, while urban living in 
the US typically corresponds to lower CO2 emission levels. Shahbaz et al. (2019) also demonstrated that 
FDI and energy consumption increase carbon emissions, whereas trade openness reduces them. 
Similarly, Kivyiro and Arminen (2014) found that FDI positively affects carbon emissions in some 
economies and negatively affects others. Different approaches have been incorporated to scrutinise the 
possible impact of CO2 discharges. Taking China’s Xinjiang as a case, Huo et al. (2015) adopted a 
STIRPAT model to scrutinise the potential effect of socio-economic development on carbon discharges. 
Conversely, Yao & Sun (2012) employed the Ward approach to carry out an in-depth analysis of CO2 
emissions across diverse areas, highlighting that the intensity of carbon discharges is primarily subject to 
coal consumption, energy intensity, and the degree to which the heavily polluting industries are 
saturated. In particular, the EKC serves as a critical theory as it triggers the changing trend between the 
per capita GDP and pollution in order to demonstrate the influences of economic development (Jebli, 
Youssef, 2015). From the carbon intensity’s perspective, the EKC is used extensively to illustrate that 
carbon intensity shall persistently heighten in the initial phase of economic development. However, it will 
decline with the advancement in economic development. Though several studies examine the influential 
mechanism of carbon emission from diverse viewpoints, little is known regarding the comparative 
significance of these contributing factors among various levels. 

From the perspective of regional disparities in CO2 emissions, studies have primarily been categorised 
into two main types based on research techniques such as the Theil index and the Gini coefficient 
(Mussini, Grossi, 2015; Grunewald et al., 2014). Some researchers have adopted these inequality indices 
to assess regional disparities in CO2 emissions and identify their sources (Wang et al., 2020). Wang and 
Zhou (2018) applied the IDA model and the Theil index to analyse global disparities in carbon emissions 
from 1995 to 2009, concluding that these disparities primarily originate from emerging economies, 
particularly India and China. Similarly, Pakrooh et al. (2020) highlighted provincial differences in carbon 
emissions within Iran’s agricultural sector and analysed their driving factors. In the same vein, Bianco et 
al. (2019) examined potential inequality in carbon emissions and energy usage within the EU, finding that 
while carbon emission disparities remained relatively stable, GDP was the key driver. Other studies 
explored the spatiotemporal variations in CO2 emissions (Wang et al., 2021; Li et al., 2021). However, 
merely quantifying the inequality in carbon emissions offers limited insights. Therefore, researchers and 
policymakers are actively investigating the underlying causes of these disparities to develop practical 
strategies for addressing them. 

A growing number of scholars have focused on the dynamic changes and factors influencing CO2 
emissions. Prominent methods include structural decomposition analysis (SDA; Sajid, 2021), index 
decomposition analysis (IDA; Zhang et al., 2021) and STIRPAT-based regression models (Fang et al., 
2022). Su and Ang (2017) utilised a structural decomposition method to introduce an intensity indicator 
for detecting carbon emissions from a demand perspective. Similarly, Wang et al. (2016) employed a 
multi-regional SDA model to investigate the drivers of carbon emissions at both national and global levels. 
However, the input-output tables required for SDA have long update cycles, making it difficult to obtain 
recent data. In contrast, IDA allows continuous, time-series analysis (Liu et al., 2021). Afterwards, Su and 
Ang (2016) defined two core categories of decomposition, namely SDA and TDA. With the regional 
differences’ expansion, certain researchers aimed to explore heterogeneity related to the factors 
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impacting CO2 discharges on the basis of SDA (Wang, Zhou, 2018). For example, using the spatial IDA in 
China from regional and national standpoints, Li et al. (2017) investigated the evaluation of CO2 
discharges’ drivers, confirming that the economic scale and energy efficiency act as the major drivers 
behind regional disparity in carbon discharges. Likewise, Song et al. (2019) discovered regional variances 
in CO2 discharges as well as the dynamics of affecting factoring by utilising temporal-spatial IDA using 
the panel data from the provinces of China from 2000 to 2015. 

In general, hierarchy and scale are significant for effectively understanding the complexity of regional 
socio-economic inequality in China, including carbon emissions (Li, Wei, 2010; Geist, Lambin, 2010). 
Findings from one spatial scale are not applicable to another, as socio-economic development is subject 
to scale changes. Many scholars have suggested that geographical phenomena exhibit varying 
developmental trends at different spatial scales. Consequently, the issue of scale has become a 
common challenge in geography-oriented research (Guagliardo, 2004). As a form of socio-economic 
indicator, CO2 emissions also demonstrate spatial heterogeneity and multi-scale patterns, exhibiting a 
hierarchical structure with non-linear processes across spatial scales. However, most prior research has 
been conducted at either a single city or single spatial scale, often within different geographical and 
political contexts (Cai, 2014; Wang et al., 2018). Studies investigating and comparing the spatiotemporal 
variance of CO2 emissions and their drivers across different levels remain scarce, primarily due to the 
lack of precise local-scale carbon emissions data (Shi et al., 2018). 

Further analysis is necessary to examine the regional variations and evolutionary pathways of China’s 
CO2 emissions. In most studies on China, total carbon emissions are used to indicate the extent of 
emissions. However, regional differences within China should be analysed through the lens of carbon 
emissions intensity. Additionally, existing studies often focus on national or regional contexts, which 
reveal trends in carbon emissions at the national level but fail to capture disparities among Chinese 
provinces. Given the pronounced regional inequality in a country like China, exploring provincial-level 
differences in carbon emissions is of practical significance. Moreover, the evolutionary pathways of 
province-level carbon emissions should be examined from a spatiotemporal perspective to accurately 
assess the emissions intensity of each province. 

To address this, the present study utilises spatial autocorrelation to reflect regional disparities by 
examining changes in the spatial patterns of carbon emissions. Additionally, the factors influencing 
carbon emissions in each province are analysed using geographically weighted regression (GWR). This 
study aims to determine whether carbon emissions in China are sensitive to spatial scale and whether 
the multi-faceted mechanisms driving CO2 emissions exhibit a hierarchical spatiotemporal structure 
influenced by socio-economic development patterns. 

2. Data and Methodology 

2.1 Estimation of Carbon Emission 

This paper focuses on estimating carbon emissions from non-renewable fossil fuels and their primary 
derivatives. Using data from the China Energy Statistics Yearbook, eight types of energy – coke, coal, 
crude oil, gasoline, kerosene, natural gas, fuel oil, and diesel – were selected for carbon emissions 
calculations. 
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Table 1. Various Fuels’ Emission Coefficient Estimates 

Types NCVi [kJ /kg or kJ/m3] CCi [kg/GJ] COFi 
Coal 20934 26.37 0.90 
Coke 28470  29.5 0.90 
Crude oil 41868 20.1 0.98 
Gasoline 43124  18.90 0.98 
Kerosene 43124 19.60 0.98 
Diesel 42705  20.20 0.98 
Fuel oil 41868  21.1 0.98 
Natural gas 38931  15.32 0.99 

Notes: The net calorific value (NCVi) is sourced from the General Principles of Comprehensive Energy Consumption 
Calculation (GB/T 2589-2020). The carbon content (CCi) references the Guidelines for Compiling Provincial Green-
house Gas Inventories. Meanwhile, the carbon oxidation factors (COFi) are derived from the Greenhouse Gas Inven-
tory Guide Study. 

 

Source: own calculations.  
 

In accordance with the 2006 IPCC National Greenhouse Gas Inventory Guidelines, a formula for 
estimating carbon emissions has been developed. The specific mathematical expression for calculating 
carbon emissions from energy consumption is provided in Eq. (1): 

1 44/12e i i i i
i

E AC NCV CC COF=    
     (1) 

In this expression, E  represents the carbon emissions generated by energy consumption in each 

province, measured in kilograms. Here, i  denotes the energy type; iAC  is the amount of fuel i  

consumed, measured in cubic meters or kilograms. iNCV  represents the net calorific value of fuel i , 

expressed in kJ/kg or kJ/m³. iCOF  refers to the carbon oxidation factor for fuel i , and 44/12 is the 
conversion factor used to convert carbon into CO2. These data are obtained from national statistical 
yearbooks and the General Rules for Calculation of Comprehensive Energy Consumption compiled by 
China.  

Table 1 presents the estimated emission coefficients for various fuels. 

2.2 Spatial Correlation Analysis 

Spatial autocorrelation, which is frequently used to examine regional spatial distribution differences and 
associations of elements, is divided into global and local spatial autocorrelation. Global spatial 
autocorrelation captures the overall characteristics of spatial dependency across the entire area and is 
typically measured using the Global Moran’s I index. In contrast, local spatial autocorrelation focuses on 
spatial variations relative to a specific unit and its surroundings, with the Local Moran’s I index serving as 
the common metric. 

2.2.1 Global Spatial Autocorrelation 

The global spatial autocorrelation method quantitatively analyses the correlation and differences 
between elements in regional space by the Global Moran’s I index. The specific formula is as follows:  
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I=
n ∑ ∑ ωij(xi-x̅)(xj-x̅)n

j=1
n
i=1

∑ (xi-x̅)2n
i=1 ∑ ∑ ωij

n
j=1

n
i=1

 

                          =
∑ ∑ ωij(xi-x̅)(xj-x̅)n

j=1
n
i=1

S2 ∑ ∑ ωij
n
j=1

n
i=1

    i=1,2,…,n      (2) 

                          S2= 1

n
∑ (xi-x̅)2n

i=1 ;x̅= 1

n
∑ xi

n
i=1                    (3) 

In this expression, ix and jx  represent the carbon emissions from energy consumption in provinces i  

and j , respectively. x̅ denotes the mean carbon emissions across the 30 provinces under study. The 

total number of provinces is represented by n , while ij  signifies the elements of the spatial weight 

matrix, and S  represents the standard deviation. Moran’s I values range from -1 to 1. A positive Moran’s I 
(I>0) indicates a positive spatial correlation, suggesting stronger spatial dependence and smaller overall 
spatial variance. Conversely, a negative Moran’s I (I<0) implies a negative spatial correlation, indicating 
greater spatial disparities. A value of zero (I=0) suggests randomness or no spatial correlation. 

2.2.2 Local Spatial Autocorrelation 

The local spatial autocorrelation is used to measure the degree of differences in research elements 
between local regions. The formula for calculating the Local Moran’s I index is: 

Ii=
(xi-x̅)

S2 ∑ ωij(xj
-x̅n

j=1 )                    (4) 

In this expression, a positive iI suggests a minimal spatial disparity between province i  and its 

neighbouring province j . Conversely, a negative iI indicates a pronounced spatial difference between 
the two provinces. By utilising the Local Moran’s I index, Z-score, and LISA values, spatial patterns can be 
categorised into four distinct types. The Low-High (LH) type is characterised by a positive local Moran’s I 
index, a negative Z-score, and a negative LISA value, representing high values surrounded by lower ones. 
The High-High (HH) type features positive values for the Local Moran’s I index, Z-score, and LISA, 
indicating clusters of high values. The Low-Low (LL) type, with negative values for the Local Moran’s I 
index and Z-score but a positive LISA value, signifies clusters of low values. Lastly, the High-Low (HL) type 
displays negative values for the Local Moran’s I index, Z-score, and LISA, denoting low values surrounded 
by higher ones.  

2.3 Geographically Weighted Regression (GWR) Model 

The GWR model enhances the conventional linear regression model by incorporating the spatial location 
of data points into the regression equation. This allows the data from neighbouring provinces to be used 
for local estimation. The corresponding expression is: 

     yi=β0(ui,vi)+ ∑ βk(ui,vi)xiki +εi           i=1,2,…,n         (5) 

In this model, iy  represents the carbon emissions from energy consumption in each province. ikx

denotes the k -th influencing factor of carbon emissions and energy consumption in the province i . The 

tuple ( iu , iv )specifies the spatial coordinates of the i -th province. 0  is the constant of the linear 
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regression at the specific location( iu , iv ), while k  represents the spatially varying regression 

coefficient for the k -th influencing factor in the province i . i denotes the random error component. 
The regression coefficients of the explanatory variables in the GWR model vary with spatial location. 
Applying this model to analyse the regional variations in factors influencing energy consumption and 
carbon emissions across Chinese provinces allows for a more detailed examination of spatial 
characteristics and a more accurate investigation of the data’s spatial non-stationarity. 

2.4 Data Source 

This study utilises spatial vector data obtained from the GIS database of the Resource and Environmental 
Science and Data Centre at the Chinese Academy of Sciences. Province- and region-specific data were 
primarily sourced from the China Statistical Yearbook (2006–2019), the China Energy Statistical Yearbook 
(2005), and various provincial statistical yearbooks (National Bureau of Statistics, Department of Energy 
Statistics, and China Energy Statistical Yearbook, 2016). Calculations of total carbon emissions in each 
province are based on energy usage data reported in the China Energy Statistical Yearbook, following the 
methods outlined in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 

Due to limited data availability in Macao, Taiwan, Hong Kong, and Tibet, the empirical analysis of spatial 
carbon emissions measurement is confined to the remaining 30 provinces, autonomous regions, and 
municipalities. The emission factors and heat conversion coefficients for various fossil fuels used in this 
analysis are sourced from the General Principles for the Calculation of Comprehensive Energy 
Consumption, the Guidelines for the Preparation of Provincial Greenhouse Gas Inventories, and the 2007 
Research on Greenhouse Gas Inventories. 

3. Spatial Correlation Analysis 

3.1 Global Spatial Autocorrelation 

Using ArcGIS 10.5, the Global Moran’s I index for China’s carbon emissions was calculated based on 
data from 2005 to 2018. The results are presented in Table 2. 

Table 2. Global Moran’s I of Energy Carbon Emissions in China, 2005-2018 

Years Moran’s I z p 
2005 0.353 3.404 0.001 
2006 0.353 3.395 0.001 
2007 0.351 3.400 0.001 
2008 0.366 3.546 0.000 
2009 0.356 3.463 0.001 
2010 0.350 3.413 0.001 
2011 0.358 3.452 0.001 
2012 0.344 3.349 0.001 
2013 0.340 3.466 0.001 
2014 0.329 3.390 0.001 
2015 0.334 3.475 0.001 
2016 0.317 3.336 0.001 
2017 0.303 3.202 0.001 
2018 0.310 3.240 0.001 

Source: own calculations. 

The Global Moran’s I values for energy consumption-related carbon emissions across 30 Chinese 
provinces (2005-2018) were positive, with a significance level of 1% (Table 2). This indicates that the 
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carbon emissions of each province were not spatially independent but exhibited significant spatial 
dependence. In other words, provinces with high energy-related carbon emissions were relatively close 
to other provinces with similarly high emissions. Likewise, regions with low energy carbon emissions 
were also clustered together, displaying a clear high-high and low-low clustering pattern. 

Over time, Moran’s I values show a downward trend from 2005 to 2018, suggesting that the spatial 
dependence of energy consumption and carbon emissions in China has been weakening. As spatial 
spillover effects significantly impact CO2 emissions in each province, neighbouring provinces tend to 
have similar carbon emissions. 

Four key time nodes, 2006, 2010, 2014 and 2018, are selected to describe the energy consumption’s CO2 
discharges in China. The distribution of CO2 discharges in China was drawn by ArcGIS10.5, as shown in 
Figure 1. 

 
(a) 2006 

 
(b) 2010 

 
(c) 2014 

 
(d) 2018 

Source: created by the authors. 
 

Figure 1. Distribution of Carbon Emissions in China 

In China, CO2 emissions vary significantly across regions. Carbon emissions in the eastern zone are 
greater compared to those in the western zone, and emissions in the northern zone are higher than in the 
southern zone, particularly in the Bohai Bay Economic Circle in the northeast. 

Figure 1 clearly illustrates the substantial regional disparities in China’s carbon emissions. Specifically, 
the eastern regions exhibit higher emissions than the western regions, and the northern regions exceed 
the southern regions in terms of emissions, with particularly elevated levels in the Bohai Bay Economic 
Circle in the northeast. 

3.2 Local Spatial Autocorrelation 

The Local Spatial Autocorrelation conducts a detailed analysis of regional variations in spatial 
autocorrelation by examining the local spatial autocorrelation of energy consumption and carbon 
emissions across 30 Chinese provinces. Key years – 2006, 2010, 2014 and 2018 – were selected for 
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analysis from 2005 to 2018. The Moran’s I scatter plot, showing the spatial distribution of carbon 
emissions from energy consumption, was generated using ArcGIS 10.5, as shown in Figure 2. The carbon 
emissions in China exhibit significant local spatial agglomeration characteristics. 

In the four key years of 2006, 2010, 2014 and 2018, eight provinces displayed significant spatial 
autocorrelation. In 2006, the HH regions were primarily Hebei, Shanxi, Shandong, Henan, and 
Heilongjiang, with Sichuan as an LL region and Anhui as an LH region. In 2010, the HH regions remained 
Hebei, Shanxi, Shandong, Henan, and Heilongjiang, while Xinjiang and Sichuan were LL regions, and 
Anhui was an LH region. By 2014, the HH regions still included Hebei, Shanxi, Shandong, Henan, and 
Heilongjiang, with Guizhou and Sichuan classified as LL regions and Xinjiang as an HL region. In 2018, the 
HH regions continued to consist of Hebei, Shanxi, Shandong, Henan, and Heilongjiang, with Sichuan and 
Guizhou as LL regions and Xinjiang as an HL region. 

 
(a) 2006 

 
(b) 2010 

 
(c) 2014 

 
(d) 2018 

Source: created by the authors. 
 

Figure 2. The Moran’s I Scatter Point Spatial Distribution of Carbon Discharges 

The HH regions, characterised by high carbon emissions, primarily encompass areas such as the Bohai 
Bay Economic Circle, the North China Plain, and Heilongjiang, excluding Beijing and Tianjin. These areas 
feature advanced economic development, established industries, or abundant natural resources. 
Coupled with rapid urbanisation and industrialisation, this leads to significant fossil fuel consumption 
and a sharp rise in carbon emissions. Moreover, regions like Shanxi and Henan, which serve as 
considerable energy hubs in China, exhibit high carbon emissions due to their reliance on energy-
intensive economic growth. 

The LL category is predominantly found in the southwest. Despite the Western Development Strategy 
promoting economic growth and increased carbon emissions, these regions still lag behind their eastern 
counterparts. Over these four years, Xinjiang transitioned from a low-significance LL region to an HL type. 
Located in northwest China, Xinjiang’s initially low economic levels have experienced substantial growth 
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driven by national development strategies, leading to increased energy consumption and, consequently, 
higher carbon emissions compared to other western provinces. 

Anhui has also experienced shifts in its emission levels over the years, typically characterised by high 
carbon emissions due to its location in the central inland region. Rapid industrialisation and urbanisation 
have driven increased energy consumption and carbon emissions in the province. Notably, in 2014, the 
secondary industry dominated Anhui’s economy. By 2018, the share of the secondary industry had 
aligned with that of the tertiary sector, which generally produces lower carbon emissions, contributing to 
the observed changes. 

Research and analysis indicate that spatial heterogeneity characterises carbon emissions across 
different Chinese provinces, with spatial factors significantly influencing overall emissions. 

Table 3. Estimation Results of GWR Model 

Index 2006  2010  2014  2018  
R2 0.715 0.763 0.759 0.627 
Adjusted R2 0.594 0.653 0.641 0.484 
AICc 665.278 673.372 682.526 701.942 

Source: own calculations.  

4.2.2 Factor Analysis 

1. Population 

Analysis of the regression coefficients reveals that the population variable exhibits positive coefficients in 
most provinces for 2006, 2010, 2014 and 2018, although some provinces show negative coefficients. 
High levels of urbanisation in the central and eastern zones typically lead to a significant increase in 
carbon emissions as the population grows. In contrast, the western provinces, characterised by lower 
technological advancement, less industrialisation and lower energy efficiency, tend to consume more 
energy, thus generating higher carbon emissions. Additionally, the substantial economic scale of certain 
provinces involves numerous workers in economic activities, which further increases energy 
consumption. Notably, Xinjiang and Qinghai exhibit the most pronounced suppressive impact of 
population growth on carbon emissions. 

2. Energy structure 

Across all provinces in China, the energy structure has contributed to the rise in CO2 emissions. Spatially, 
the impact of energy structure on carbon emissions generally diminishes from west to east (2006 to 
2018). Temporally, the influence of energy structure on carbon emissions has been progressively 
increasing. This trend is primarily driven by rapid urbanisation, which has led to significant increases in 
overall energy and coal consumption, thereby escalating carbon emissions. 

3. Gross regional product 

Economic activity has been a major driver of increased carbon emissions across all Chinese provinces. 
During periods of rapid economic growth and substantial investment, carbon emissions tend to rise. 
However, as economic development reaches higher levels, greater emphasis is placed on environmental 
issues, leading to enhanced awareness and continuous technological improvements, which can 
eventually reduce CO2 emissions. The positive regression coefficients of GDP in this study over the past 
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four years suggest that the relationship between economic growth and CO2 emissions in all provinces is 
still intensifying. Historically, economic growth has led to an increase in carbon emissions. 

4. Influencing Factors and Results 

4.1 Selected Factors 

There are significant differences in economic level, energy structure, and technological development 
among Chinese provinces, which result in varying impacts on carbon emissions across different regions. 
CO2 emissions are influenced by a variety of factors, including energy consumption intensity, 
urbanisation level, population, energy structure, economic development, and energy efficiency (Wang et 
al., 2015; Jing, 2015; Su et al., 2018; Qing et al., 2023). In this study, three independent variables were 
selected: the gross regional product, year-end population, and energy structure of 30 provinces in China 
in 2006, 2010, 2014 and 2018. These variables are used to construct the GWR model to investigate the 
spatial heterogeneity of factors influencing China’s carbon emissions. Collinearity among the selected 
factors was examined using SPSS 22.0, and the results indicate no multicollinearity between the 
variables, confirming the suitability of the GWR model. 

4.2 Estimation Results and Factors Analysis 

4.2.1 GWR Estimation 

Using data from 2006, 2010, 2014 and 2018 for 30 Chinese provinces, this study employs ArcGIS 10.5 to 
analyse the spatial variability of factors influencing energy consumption and carbon emissions in each 
province. The regression estimates are presented in Table 3, demonstrating a satisfactory model fit. 

5. Discussion 

The carbon emissions of each province were not spatially independent, meaning that Chinese provinces 
with high CO2 emissions were generally located near other provinces with similarly high emissions, and 
vice versa. Furthermore, the spatial dependence of energy consumption and CO2 emissions in China 
exhibited a downward trend from 2005 to 2018. Neighbouring provinces displayed similar carbon 
emission levels, as spatial spillover effects significantly influenced CO2 emissions in each province. 
Similarly, CO2 emissions in the western zone were lower than those in the eastern zone. In comparison, 
emissions in the northern zone were higher compared to the southern zone, particularly in the northeast, 
including the Bohai Bay Economic Circle. 

In China, CO2 emissions exhibit significant local spatial agglomeration characteristics. Spatial 
heterogeneity defines CO2 emissions across different provinces, with spatial factors influencing overall 
emissions. The HH region, characterised by high CO2 emissions, predominantly includes areas such as 
the North China Plain, the Bohai Bay Economic Circle, and Heilongjiang, excluding Tianjin and Beijing. 
These areas have established industries and advanced economic development, which, combined with 
rapid industrialisation and urbanisation, have led to substantial fossil fuel consumption and sharply 
rising CO2 emissions. Additionally, regions like Henan and Shanxi, key energy hubs in China, show high 
CO2 emissions due to their heavy reliance on energy-intensive economic growth. 

The LL category is primarily located in the southwest. Despite the Western Development Strategy 
promoting economic growth and increased CO2 emissions, these areas still lag behind the eastern 
regions. Over the years, Xinjiang has transitioned from a low-significance LL category to an HL category. 
Initially characterised by low economic levels, Xinjiang has seen noticeable growth, leading to higher 
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energy consumption and CO2 emissions than other western provinces. Similarly, Anhui (an LH region) 
has experienced shifts in its emission levels, typically marked by high CO2 emissions due to its location in 
the central inland zone. Rapid urbanisation has further increased energy consumption and CO2 
emissions in Anhui. 

There are notable differences in GDP, population growth, and energy structure across Chinese provinces, 
resulting in diverse impacts on carbon emissions. From the perspective of influencing factors, the 
population shows positive coefficients in most provinces for 2018, 2014, 2010 and 2006, though some 
provinces display negative coefficients. High levels of urbanisation in the eastern and central zones 
generally lead to significant increases in carbon emissions as the population grows. In contrast, the 
western provinces, with less industrialisation, lower energy efficiency and slower technological 
advancement, tend to consume more energy, leading to higher CO2 emissions. Furthermore, the energy 
structure contributes to the rise in CO2 emissions across all Chinese provinces. Spatially, the impact of 
energy structure on carbon emissions tends to decrease from west to east. Over time, this effect has 
gradually intensified, driven by urbanisation and population growth. Finally, GDP remains a key driver of 
increasing CO2 emissions across all Chinese provinces, with its influence continuing to escalate 
nationwide. 

Conclusions  

Following the methodology outlined by the IPCC, this study calculates the carbon emissions from energy 
consumption in China. It then applies global and local spatial autocorrelation techniques to conduct an 
empirical analysis, elucidating the spatio-temporal evolutionary patterns of carbon emissions across the 
country. Several key findings emerge: First, the Global Moran’s I indicates a decreasing trend from 2005 
to 2018, suggesting a weakening spatial dependency of carbon emissions among provinces. Notably, 
regions with high emission values are primarily located in the Bohai Bay Economic Circle and 
Heilongjiang, among others. Second, the influence of population, energy structure, and GDP on carbon 
emissions exhibits significant temporal variation, with their regression coefficients varying markedly 
across different provinces, all contributing to an increase in carbon emissions. 

Policy Implications 

The study presents several implications for policymakers in developing effective strategies for CO2 
mitigation in China. The scale and geographical context of China must be considered to significantly 
reduce carbon emissions, which is in line with the multi-scale and heterogeneous nature of emissions. 
Policymakers should adopt strategies tailored to local conditions, as the factors influencing carbon 
emissions vary across different spatial and temporal levels. At the provincial level, optimising the 
economic structure is a core measure for significantly lowering emissions. State authorities must focus 
on upgrading traditional industries while extensively supporting the financial and services sectors, which 
have lower carbon emissions since many Chinese provinces rely heavily on energy-intensive industries. 

Moreover, carbon mitigation strategies should also emphasise technological advancements, such as 
carbon sequestration technologies and alternative energy sources. Given that carbon-related technology 
in China remains at a relatively low level, the state should prioritise investments in research and 
development. Additional efforts should be directed toward expanding renewable energy development 
and improving the efficient utilisation of coal technologies. Promoting innovation and the development of 
carbon capture and storage technologies through location-specific measures is essential for controlling 
carbon emission intensity. 
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Furthermore, it is crucial to enhance coordination between developed and underdeveloped regions in 
China. This includes focusing on optimising energy structures, supporting sustainable urbanisation, and 
managing population size in particular megacities. Local authorities should also establish a robust 
intellectual property system to facilitate the diffusion of low-carbon technologies, which would not only 
help mitigate carbon emissions but also improve public environmental awareness and encourage 
households to adopt low-carbon consumption practices. Finally, stricter environmental regulations 
should be enacted to raise the threshold for market entry in heavily polluting industrial sectors. 

Study Limitations 

There are certain limitations associated with this study. For instance, the spatial autocorrelation 
approach used here does not fully capture the frictional effects of explanatory variables influencing 
carbon emissions. Future research could focus on a more comprehensive selection of indicators to 
thoroughly investigate the mechanisms affecting carbon emissions at finer spatial scales. Additionally, 
the analysis in this study is limited to provincial-level geographical units due to data constraints, 
highlighting the need for future studies to conduct analysis at the city level or smaller units. 

Furthermore, given the significant variations in factors affecting carbon emissions across different 
industries, conducting analyses specific to various sectors would be more appropriate, thereby 
improving the precision of energy reduction strategies in the industrial sector. Finally, the time span of 
this study covers the years 2005 to 2018. Future studies can also be carried out over a broader time 
period, including the latest possible years. 
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PROVINCIJŲ REGIONINĖ NELYGYBĖ IR SU ENERGIJA SUSIJUSIO ANGLIES DIOKSIDO 

IŠMETIMO ĮTAKOS VEIKSNIAI KINIJOJE 

Shen Yue, Sun Weichen 

Santrauka. Straipsnyje, remiantis aštuonių rūšių energijos suvartojimo 2005–2018 m. duomenimis, 

pasitelkus TKKK metodiką apskaičiuotas dėl energijos vartojimo 30 Kinijos provincijų išmetamo 

anglies dioksido kiekis. Siekiant ištirti erdvinių dėsningumų pokyčius, atlikta erdvinės autokoreliacijos 

analizė, o geografiškai srovinės regresijos modelis pritaikytas vertinant anglies dioksido išmetimo 

kiekvienoje provincijoje veiksnius. Atlikus analizę suformuluotos trys pagrindinės išvados. Pirma, 

nustatyta didelė anglies dioksido išmetimo provincijose erdvinė priklausomybė. Provincijos, kuriose 

išmetama daug anglies dioksido, yra geografiškai sujungtos su kitomis provincijomis, kuriose 

išmetamas panašus kiekis, todėl susidaro skirtingi didelio ir mažo kiekio aglomeracijos modeliai. 

Tačiau ilgainiui ši erdvinė priklausomybė silpnėja. Antra, išmetamo anglies dioksido kiekis pasižymi 

dideliu vietiniu erdviniu susitelkimu, o kiekvienai provincijai būdingas unikalus erdvės 

heterogeniškumas. Galiausiai, ekonominės sąlygos, technologinė pažanga ir energetikos struktūros 

provincijose labai skiriasi, o tai lemia skirtingą poveikį išmetamam anglies dioksido kiekiui. Tokie 

veiksniai kaip ekonomikos augimas, gyventojų skaičius ir energetikos struktūra paprastai prisideda 

prie anglies dioksido išmetimo didėjimo. 

Reikšminiai žodžiai: išmetamo anglies dioksido kiekis; provincijos lygmuo; erdvinis modelis; įtaką 

darantys veiksniai. 
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