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Abstract. This paper investigates the possibility to obtain better GDP forecasts in the early stages of Great Re-
cession. Here, predictive performance refers to exclusively out-of-sample forecasts. Based on exploratory data 
analysis and general-to-specific modelling, this paper proposes a univariate predictive threshold model for the 
small open economy that outperforms its linear counterparts and correctly determines the course of events. 
This model does not explain any causal links; however, based on a set of economic arguments, it sets forward 
an idea regarding how a forecaster can act when principal determinant factors, responsible for a sudden, yet 
lasting change, are unknown, unmeasurable or cannot be influenced by national policy makers. A major dis-
similarity between usual threshold models and the model presented in this paper is that while variables act dif-
ferently under different conditions in the former, in this model, due to economic reasons, errors act differently. 
Alternatively, this paper can be viewed as a comparative GDP prediction study.
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1. Introduction

In 2010, eight prominent scientists (Colander et al., 2009) published an article that criti-
cised the way research is conducted in economics. In response to what was at that time 
the failure of economics, these authors put forward well-thought propositions about how 
to learn from the ongoing financial crisis, how to improve research, and how our efforts 
should be allocated. At first sight, their article may seem like an overreaction that will 
pass with time. However, from a contemporary perspective, there are more arguments 
for than against a change, not to mention the assessment of one of the best-known econo-
mists in academia, David Romer, who also emphasised that “our models and analysis 
will surely change” (Romer, 2012). Consequently, this paper started with a search for an 
alternative empirical approach of how to incorporate the effects of the recent financial 
crisis into econometric models.
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The current efforts of academic economists, addressing the issue of Great Recession, 
are focused on the study of linkages between the financial sector and the rest of economy 
(Olsson, 2012; Romer, 2011). Origins of this analysis can be traced up to the influential 
paper, titled “The Allocation of Credit and Financial Collapse”, by N. Gregory Mankiw, 
where he examined the case of imperfect information when a lender knows less than a 
borrower.

This paper offers a perspective different from that offered by macroeconomic theory; 
there is good reason to do so. While the direct linkage between the Great Recession and 
the financial sector may be appropriate for major world economies, it is not the same 
case for all countries. In some small open economies, e.g., Lithuania or Estonia, all fi-
nancial institutions were intact, but employment and income began to decline. The main 
cause was that the negative impacts from the crashed economies were directly transmit-
ted to the rest through various channels, e.g. credit tightening. Forecasters encountered 
a complicated problem of predicting variables of interest in the wake of the downfall. At 
that time, the exact transmission mechanism from crash economy was unclear; therefore, 
measuring the effects of the underlying factors was impossible. Exactly under these cir-
cumstances the univariate models can be of great use. 

In a certain way, this article joins the ongoing discussion in academic literature on the 
capability of nonlinear models to surpass linear, and even suggests the possible origins of 
nonlinearity. In their recent article on the ability of nonlinear model to outperform linear 
models, Ferrara, Marcellino, and Mogliani found that “on average, non-linear models 
cannot outperform the linear benchmark model, even during the Great Recession period” 
(Ferrara et al., 2015). Their findings are not too drastic, nor do they completely deny the 
usefulness of nonlinear models, as the authors admit that “non-linear models do lead to 
an improvement in predictive accuracy” (Ferrara et al., 2015). In contradiction to the 
statements in this article, the authors repeat a famous insight by Stock and Watson that 
the current recession is a sequence of unusually large shocks and should be treated alike, 
rather than as a change in the stochastic macro process. The differences in the perception 
of what constitutes better performance lie in the subjective awareness of what is “better 
performance”. In this paper, I present evidence to maintain the viewpoint that drastic 
statements from either side should be avoided since revision of the stochastic macro pro-
cesses may lead to fundamental improvements. No contradictions between the opposite 
statements arise from the fact that the nonlinear pattern here is slightly different from the 
one proposed by the usual models, which were used in the study by Ferrara et al.

The structure of the paper is very concise. The first section presents the motivation 
for the regime switching model, the second section is devoted to the Monte Carlo study 
of the bias, while the third section presents several empirical applications. 

The empirical analysis is based on log transformed GDP series. Irish seasonally ad-
justed GDP at constant factor costs was taken from the Central Statistics Office and spans 



9

the period from 1997Q1 till 2014Q4. Estonian, Latvian and Lithuanian data was taken 
from Eurostat. Estonian GDP at market prices from 1993Q1 till 2014Q2 was divided by 
the price index, logged and de-seasonalised using a seasonal-trend decomposition proce-
dure, based on Loess and developed by Cleveland et alia (Cleveland et al., 1990). After 
some experimentation, the Loess window for seasonal extraction was set to be equal to 
11, as this value guarantees maximum randomness of the irregular component. Latvian 
and Lithuanian GDPs at market prices from 1995Q1 till 2014Q1 were already seasonally 
adjusted and adjusted by working days. Both series were divided by the identically ad-
justed price indexes and logged. The main reason behind the selection of these countries 
is that income in these economies was severely affected by the financial crisis of 2008.

2. Model

In the early phases of the recent financial crisis, “economists have had no choice but to 
abandon their standard models and to produce hand-waving common-sense remedies” 
(Colander et al., 2009). As it will be shown, the main reason for the failure is that the 
stochastic structure of most popular models is appropriate for relativity at quiet times, 
but cannot cope with forces that operate during periods of excess instability.

2.1. Random Walk Approximation

The stochastic structure of time series may be expressed as the sum of short and long run 
innovations ( et and εt respectively). Therefore, in a very general univariate setting, we 
have the following random walk representation:
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The division of innovations into long and short runs is very useful as we know that 
certain shocks, such as monetary or fiscal shocks, have temporary effects that diminish 
with time, while other factors, like technology, have permanent effects on the level.

The reason for retaining the popular random walk assumption is simply that we have 
no particular reason not to do so, especially in the context of the univariate model con-
straints. Random walks have been, and will be, used extensively in macroeconomics, 
and there are several fundamental studies where it is explicitly assumed that a certain 
variable (usually money aggregates or output) follows a random walk. Ball, Mankiw, 
and Romer assume that aggregate demand is driven by random walk movements in the 
money stock (Ball et al., 1988); Romer assumes that the logarithm of nominal GDP 
follows a random walk with a drift (Romer, 2011); Ball and Cecchetti assume “for  
realism” that money stock follows a random walk (Ball and Cecchetti, 1988); accord-
ing to Ljungqvist and Sargent, Barro assumes that tax revenues follow a random walk 
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(Ljungqvist and Sargent, 2004; Barro, 1979), and so on. Also, one should not forget that 
many economic series, at a superfi cial glance, can be approximated as these processes, 
and in many cases random walks are the starting point for models of non-stationary vari-
ables. The models that assume a similar structure for a certain variable were useful and 
are likely to be useful in the future. However, for certain periods in time such as sharp 
downturns, these assumptions are insuffi cient. 

FI G. 1. Log transformed GDP for Ireland (upper-left), Estonia (upper-right), Latvia (lower-left), and 
Lithuania (lower-right)

Source: Eurostat, Central Statistics Offi  ce Ireland

As shown in the panels of fi gure 1, it is evident that after the crisis, growth rates for 
Irish, Estonian, Latvian, and Lithuanian GDPs have diminished. There is a more visible 
long-lasting slump in Ireland, although Ireland has not suffered a decline as sharp as that 
in Latvia or Lithuania in the early stages of the Great Recession. Prior to the fi nancial 
crisis of 2008, all series could have been represented by the aforementioned sums of 
permanent and transitory components. However, as the graphs suggest, such a represen-
tation is inadequate during the initial and peak phases of the crisis.
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2.2. Roles of Different Components in a Random Walk Model

One of the reasons for the failure of econometric models or the inability to keep with 
what was expected of them during the crisis was the misspecification of stochastic struc-
ture. Potentially, each of the elements in equation (1) can be the source of instability. 

The deterministic element δ  represents the long run growth rate of the variable. If the 
long run rate would be affected, the proper way to model this change would be to add a 
dummy variable that encompasses this change. All countries were severely affected by 
the crisis, but Lithuanian and Estonian GDPs regained (or nearly regained) their growth 
in a few years, while Ireland’s GDP still seems to be off its long run path. Although the 
post-crisis growth of Ireland’s GDP seems to differ from its pre-crisis growth, it does not 
take long to note that in the pre-crisis period, we can pick out and isolate clearly segre-
gated growth clusters. Most probably though, what we observe in the post-crisis period is 
nothing else, but, again, one of these clusters. While Ireland’s GDP growth is off its path 
for a longer time than the Lithuanian GDP growth, we cannot conclude that the long run 
growth rate of Ireland’s GDP has changed. A relatively constant long run growth rate, 
onto which a variable tends to revert, is a theoretical concept and the empirical facts, in 
those of which we have been observing diminished growth rates for a few years, should 
not call into reconsideration the entire concept. In turn, the change in the deterministic 
component δ cannot be the source of predictive failure.

Sometimes, a wrong perception of how short run innovations act may render fore-
casts to be low in quality. The effects of short run innovations arise from η(L)et, and 
in the simplest univariate models they are captured via autoregressive αi  Δyt–i or mov-
ing average βi εt–i terms. The possibility that short run innovations have changed the  
behaviour of GDP is not very compelling, as it suggests that, for a certain period, we 
have to account for a change in α or β depending on the univariate model that fits the 
data. From a technical point of view, this means that for certain periods, the series would 
merely change the form of sluggishness. 

The initial guess was that the only reasonable source for the adverse effects were the 
ε’s. By reconstructing the events, one can easily recall that the crisis hit unexpectedly, 
evolved with many turns that were unforeseen and unknown on their own. Growth rates 
changed visibly and for lasting periods, and policy results were not as expected.1 All 
this perfectly coincides with the role of ε’s in econometric models and their cumulative 
nature. From a purely technical perspective, the crisis is nothing but the negative shock 
in period t, that caused the subsequent array of substantial negative shocks in the forth-
coming t + i periods.

1 At that time, it was very difficult to handle the consequences of the crisis and policy results, such as the fiscal 
stimulus of 2008 or “Cash for Clunkers” in the US (Taylor, 2010), that were not as expected. To avoid exaggeration 
based on the US experience, it should be mentioned that some authors conclude that certain actions reached their 
goals – the German Car Scrappage program helped to stabilize economy (Böckers et al., 2012). 
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2.3. Random Walk Approximation Revisited

A common approach in modelling time series is to assume that the errors are white noise 
or follow a certain stationary pattern, but if the shocks in period t trigger similar shocks 
in period t + 1, they should not be treated as uncorrelated. The following mini model will 
help to formalise the concept. Suppose that for the first three periods ε ~ WN, for the next 
three periods εt ~ AR(1), and for the last period εt ~ WN again. Therefore, there are three 
periods for the “usual” evolution, three periods for the recession interrelations, and then 
the system reverts to the usual evolution for the final period:
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The assumption, that ~ (1)t AR  is a simplification, which implies a constant 

relationship among the errors with a self-evident restriction that | | 1  . This assumption may 

be good enough if the system is more or less resistant to certain types of negative shocks, as it 

was with the impact of Russian financial crisis on the Lithuanian economy in the final years 

of the 20th century. At that time economies suffered from unfavourable shocks that slowed 

down growth; however, as compared to the effects of the Great Recession, these shocks had 

minor effects on the overall state of things in Lithuania. The recent financial crisis evolved 

differently and the unfavourable effects were much more significant and apparent, and 

therefore the assumption that | | 1   may be too restrictive. However, letting   to exceed 

unity for a longer time span, would suggest the total collapse of the economy, though this 

possibility, with   being constant and larger than one should be omitted from the analysis. 

The assumption, that εt ~ AR(1) is a simplification, which implies a constant relation-
ship among the errors with a self-evident restriction that |ρ| < 1. This assumption may be 
good enough if the system is more or less resistant to certain types of negative shocks, as 
it was with the impact of Russian financial crisis on the Lithuanian economy in the final 
years of the 20th century. At that time, economies suffered from unfavourable shocks that 
slowed down growth; however, as compared to the effects of the Great Recession, these 
shocks had minor effects on the overall state of things in Lithuania. The recent financial 
crisis evolved differently and the unfavourable effects were much more significant and 
apparent; therefore, the assumption that |ρ| < 1 may be too restrictive. However, letting 
ρ exceed unity for a longer time span would suggest the total collapse of the economy, 
though this possibility, with ρ being constant and larger than one, should be omitted from 
the analysis.

After taking first differences and letting short run Δet effects be captured by autore-
gressive terms αΔyt–1, we get a simple autoregression where errors for three periods 
suddenly become autocorrelated:
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Equation (3) is appropriate for periods when t d    , while equation (4) 

characterises the periods when t d  . Several simulated series obtained from the equation 

(4) are visualised in figure 2. Although the panels depict simulated series, they are strikingly 

similar to GDP series for Lithuania, Latvia, Estonia, and Ireland. In all plots,   was set to be 

equal to 0.5, and innovations for the first 50 and for the last 40 periods were white noise. In 

the top panels, for the period 51:60, the errors were autocorrelated with 0.8  , and in the 

bottom panels for the same period innovations had a unit root with 1  . 
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Generalization of the processes described above is straightforward. If we want to 

augment random walk model (1) with a single switch in regime, we can add additional 

cumulative components that represent the behaviour of a variable after the change. Suppose 

we observe white noise errors till the period  , thereafter errors change their form and follow 

AR(1) process: 
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If we want to revert the process to the usual autoregressive behaviour, the cumulative 

sum of the white noise errors should be added to obtain an equation that mimics the two 

switches. We begin with errors, that follow a pure white noise pattern. However, things 

suddenly change in period   when the errors start to act as AR(1) process or become 

interrelated in a slightly different fashion. This switch lasts for d  periods and thereafter the 

errors follow a white noise path again: 
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Equation (3) is appropriate for periods when t d    , while equation (4) 

characterises the periods when t d  . Several simulated series obtained from the equation 

(4) are visualised in figure 2. Although the panels depict simulated series, they are strikingly 

similar to GDP series for Lithuania, Latvia, Estonia, and Ireland. In all plots,   was set to be 

equal to 0.5, and innovations for the first 50 and for the last 40 periods were white noise. In 

the top panels, for the period 51:60, the errors were autocorrelated with 0.8  , and in the 

bottom panels for the same period innovations had a unit root with 1  . 

 (4)
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Equation (3) i s appropriate for periods when τ < t ≤ τ + d, while equation  (4) charac-
terises the periods when t > τ + d. Several simulated series obtained from the equation  (4) 
are visualised in fi gure 2. Although the panels depict simulated series, they are strikingly 
similar to GDP series for Lithuania, Latvia, Estonia, and Ireland. In all plots, δ was set to 
be equal to 0.5, and innovations for the fi rst 50 and for the last 40 periods were white noise. 
In the top panels, for the period 51:60, the errors were autocorrelated with ρ = 0.8, and in 
the bottom panels for the same period innovations had a unit root with ρ = 1.

FIG. 2.  Simulate d nonstationary series with regime switch

Source: author’s calculations

These graphs resemble many economic variables that were adversely affected by 
a certain factor. Here “crisis” effects are captured via sudden changes in the data gen-
erating process for the errors. Instead of constantly being white noise, errors suddenly 
became interrelated for 10 periods. This is not the only way of obtaining artifi cial series 
that are very similar to those in graphs, however slumps here stand for regularity and not 
for randomness.
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2.4. The Final Version

The possibility of the estimation depends on the possibility of simulating similar pro-
cesses. If it is possible to simulate them, it should also be possible to estimate them. The 
autoregressive representation in differences for the process in equation  (4) is:
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Here tI  is a dummy variable that is equal to 1 if t d    , and is equal to 0 

otherwise. For convenience we may consider autocorrelation of errors as “crisis” regime and 

white noise behaviour as “pre-crisis” and “post-crisis” regimes. These two error regimes 

yield two different autoregressive processes, respectively: 
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Combining both equations in (6), we get: 
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Here It is a dummy variable that is equal to 1 if τ < t ≤ τ + d; otherwise, it is equal  
to 0. For convenience, we may consider the autocorrelation of errors as the “crisis” 
regime and white noise behaviour as “pre-crisis” and “post-crisis” regimes. These two 
error regimes yield two different autoregressive processes, respectively:
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Combining both equations in , we get:
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From a first sight one can get false impression, that ordinary least squares may be used 

for the estimation purposes. Two issues prevent this possibility. In equation (7), 
* (1 )    , *

1     and *
2   . Restriction *

1     can be rewritten as 
*
1    . Combining with *

2   , we get * *
2 1( )       or 2 * *

1 2 0      . 

Alternatively, restriction *
2    can be rewritten as *

2 /    . Combining with 
*
1    , we get * *

1 2 /       or 2 * *
1 2 0      . It follows that solutions for ρ’s 

and α’s will be identical. In real life applications that does not necessarily has to be like that. 

The formula for solving this quadratic equation is * *2 * 0.5
1 1 2( ( 4 ) ) / 2    . One of the 

roots gives us the estimate of  , while the other root is the estimate of  , but if ty  is 

stationary and the condition for stability * *
1 2 1    is fulfilled, the solutions to the quadratic 

equation can be complex conjugates of each other. Conversely, if * *
1 2 1   , the two roots 

are real and, under usual circumstances, one root is less than 1 while the other is greater than 

1. This makes sense only if errors turn from the white noise into explosive behaviour, i.e., 

when 1  , and it is not very likely that things were going up this way. 

The simple solution is to combine the first AR(1) model in (6) for pre- and post-crisis 

periods with equation (7): 
 * * *

1 1 1 2 2( ) (1 )( )t t t t t t t ty I y I y y                     (8) 

In this simplified version, we have analysed a stationary process, that during certain 

periods of time becomes autocorrelated. Due to the identification problems, that may occur, if 

the solutions of the above discussed quadratic equation result in complex roots and due to the 

necessary assigned explosive features of the errors, in the case of real roots, least squares is 

not the proper tool for the estimation of this model. Despite the similarity to the usual TAR 

model, model (8) is not a simple TAR. First, the error sequences t  and t  have distinct 

features: t  can be autocorrelated, while t  cannot, though the model (8) cannot be written 

with a single “compromised” or “averaged” error term. Second, some coefficients in equation 

(7) are restricted such that *
1     and *

2   , what is inadequate from economic 

point of view. For these reasons it is more convenient to apply maximum likelihood routines 

on equation (5) than any version of least squares on equation (8) directly. Joint log likelihood 

function for the estimation of the model in (5) is: 
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In this simplified version, we have analysed a stationary process that becomes auto-
correlated during certain periods of time. Due to two factors, the first being the identifi-
cation problems that may occur if the solutions of the above discussed quadratic equa-
tion result in complex roots, and  the second being the necessary assigned explosive 
features of the errors, in the case of real roots, least squares are not the proper tool for 
the estimation of this model. Despite the similarity to the usual TAR model, model (8)
is not a simple TAR. Firstly, the error sequences εt and νt have distinct features: εt can 
be autocorrelated, while νt cannot, though the model (8) cannot be written with a single 
“compromised” or “averaged” error term. Secondly, some coefficients in equation (7) 
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As mentioned before, this model is not a conventional TAR model and, despite its 
superficial similarity with conventional TAR models, optimisation techniques will be 
required for the proper estimation of the coefficients.

3. Monte Carlo

In order to determine whether the estimate of ρ is biased under maximum likelihood or 
not, a large-scale Monte Carlo simulation was performed. The bias function was ob-
tained by computer simulation, using 10000 replications for different samples and differ-
ent proportions of observations in an autocorrelated regime. More precisely, the samples 
of size 40, 80, 120, 160, 200, 240, and 280 were used, while selected values for ρ ranged 
from 0.1 to 1, with a 0.1 step. Selected proportions of observations in the downfall re-
gime are 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50. The simulated 
process had this form:
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Short run innovations were deliberately omitted for simplification, in order to bypass 

the estimation of the autoregressive coefficients, as in equation (10), and to save computation 

time. 

 
FIG. 3: Response surface for   
Source: author’s calculations 
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Short run innovations were deliberately omitted for simplification, in order to bypass 
the estimation of the autoregressive coefficients, as in equation (10), and to save com-
putation time.

Figure 3 summarizes the simulation results. The larger the sample, and the closer 
the proportion to 0.5 is, the smaller is the bias of ρ. From here, it follows that in small 
samples and in samples with a small proportion of observations in the “crisis regime”, 
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the estimates of ρ are substantially downward biased. Therefore, in the samples that 
macroeconomists work with, the bias will definitely exist. In empirical applications, the 
number of observations in the “crisis regime” is unlikely to be large, and the correction 
of bias is a must, in order to increase the reliability of forecasts.

FIG. 3. Response surface for ρ

Source: author’s calculations
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Specification of powers and cross-products in equations (11) and (12) was obtained 

after a standard experimentation. Estimates of the coefficients, their standard errors, and t  

values are in table 1. 
TABLE 1: The results of GLS estimation of equation (11) 

Coefficient  Estimate Std. Error t value 

  0.7303 0.0345 21.1933

1  -5.7768×10-3 7.8891×10-4 -7.3226

2  3.7310×10-5 8.0575×10-6 4.6304

3  -1.1948×10-7 3.3443×10-8 -3.5728

4  1.4411×10-10 4.8481×10-11 2.9725

1  -2.9232 0.3657 -7.9940

2  10.7082 2.1283 5.0314

3  -19.4455 5.0303 -3.8656

4  13.2302 4.1479 3.1896

  8.5586×10-7 1.2528×10-4 6.8315
Source: author’s calculations 

The estimates of the coefficients in table 1 allow us to calculate the bias of   for given 

sample T  and the proportion P  in order to adjust the estimate of  . 
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TABLE 1. The results of GLS estimation of equation 

Coefficient Estimate Std. Error t value
α 0.7303 0.0345 21.1933

β1 -5.7768×10-3 7.8891×10-4 -7.3226
β2 3.7310×10-5 8.0575×10-6 4.6304
β3 -1.1948×10-7 3.3443×10-8 -3.5728
β4 1.4411×10-10 4.8481×10-11 2.9725
γ1 -2.9232 0.3657 -7.9940
γ2 10.7082 2.1283 5.0314
γ3 -19.4455 5.0303 -3.8656
γ4 13.2302 4.1479 3.1896
δ 8.5586×10-7 1.2528×10-4 6.8315

Source: author’s calculations

The estimates of the coefficients in table 1 allow us to calculate the bias of ρ  for given 
sample T  and the proportion P in order to adjust the estimate of ρ.

To gain an impression of the consequences of ignoring the bias, consider a sample of 
80 observations with 4 observations in the autocorrelated regime. Here the bias of ρ is 
about 0.3333. If one has 8 observations in the autocorrelated regime, the bias is smaller 
and is about 0.2551. With 20 observations in the autocorrelated regime, the bias is about 
0.1551. With 40 observations in the autocorrelated regime and 40 observations in white 
noise regime, the bias is even smaller – 0.0975. In larger sample with 280 observations, 
140 of which are in the autocorrelated regime and the white noise regime each, the bias 
is even smaller – at 0.0322. In the same sample with 280 observations, 14 of which are 
in the autocorrelated regime, bias is substantially larger – 0.1910. Summarizing, the 
larger the sample, and the closer the ratio of observations in different regimes to 0.5 is, 
the lower is the bias.

There are two ways to decrease the bias: increasing the sample size and (or) balanc-
ing the regimes, and it is difficult or nearly impossible to implement any of them in real 
life. Macroeconomic samples are usually not large and it is hard to imagine that autocor-
related errors will account for a half of the sample. The only possible way to solve the 
bias problem is to calculate it using the coefficients from table 1 and to alter the estimate 
of ρ manually. Overall, disregarding the bias is not advisable, as this may lead to severely 
biased forecasts.

A combination of estimation methods will be employed to “unbias” the estimates. 
In the first step, usual maximum likelihood routines will be applied, using the BFGS 
method for the initial search. After the initial estimates are obtained (denoted as δ͂, ᾶ, 
and ρ͂), the estimate of ρ is manually corrected. The bias for ρ͂, denoted as B(ρ͂), is cal-
culated using the coefficients from table 1, and ρ is altered accordingly by adding the 
bias B(ρ͂) to the initial estimate ρ͂. This procedure yields the corrected estimate of ρ:  
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ρ͂* = ρ ͂ + B(ρ͂). In the final step, maximum likelihood routines are repeated again, using  
δ͂, ᾶ, and ρ͂* as starting values for the search of δ, α and ρ. In the last step, the conjugate 
gradient method is preferred over BFGS as the “conjugate gradient has a tendency to 
converge if the starting point is very close to the desired minimum” (Shewchuk, 1994); 
after the bias correction, the initial estimates in the final step are close or much closer to 
the searched ones.

4. Estimation and Discussion

This section is devoted to the empirical illustrations of the techniques described in the 
previous sections. Examples will be based on GDP series for Ireland, Estonia, Latvia, 
and Lithuania. For GDP analysis, the univariate models are definitively misspecified in 
the sense that GDP cannot be adequately modelled without taking into account factors 
such as inflation, interest rates, money supply and etc. Here, however, misspecification 
is of secondary importance. Firstly, this model mimics how a forecaster could have acted 
in the wake of the financial crisis with information available then. Secondly, practition-
ers frequently observe that univariate models outperform multivariate models in short 
run forecasting. Recent studies by Bernardinia and Cubadda (Bernardinia et al., 2015), 
and Carriero, Kapetanios, and Marcellino (Carriero et al., 2011) confirm this common 
observation.

Forecasting with regime switching models is straightforward. First, consider the fore-
casts from the model with a regime switch. Updating the second equation in  by one 
period and taking conditional expectation, conditioned on the information available in 
period t, we get the forecast for period t + 1:

Et(∆yt+1) = δ + αΔyt +ρεt 

In the same way, under the assumption that εt+1 = ρεt + νt+1, the forecasts for periods 
t + 2 and t + 3 are obtained in this manner:
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For instance, if in a sample with 37 periods, the switch occurs in the 33rd period and we 

have to predict the GDP for the 38th period, the prediction equation will look like this: 
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Additionally, suppose that the switch occurred in period t – 4 and we have to obtain the 
predictions for the period t + 1. Appropriately rearranged, equation (13) takes this form:
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Next subsections will present the results for selected countries.

4.1. Irish predictions

Predictive performance of the regime switching models will be assessed with out of 
sample forecasts for four quarters. The comparison of predictions from the best fit-
ting linear versus the best fitting regime switching model is essential in order to assess 
whether allowing errors to switch processes proved itself. Using Irish data from the  
1997Q1-2008Q4 period, predictions of GDP growth rates (first differences of log trans-
formed GDP are denoted as yt 

ie) are obtained for the four quarters of 2009. In the next 
step, the sample was augmented with the actual data from 2009Q1 and the prediction 
was repeated for the remaining three quarters of 2009 and the first quarter of 2010. Fore-
casts for subsequent periods were obtained using the same logic. 

The quality of the predictions will be assessed by weighting up the accuracy of the 
predictions and the significance, constancy, and stability of the parameters in linear and 
regime switching models. The root-mean-square error (RMSE) was chosen as the main 
quantitative accuracy measure. The estimates and RMSEs of corresponding linear and 
regime switching models are in table 2, while the actual and predicted GDPs for Ireland 
are depicted in the six panels of figure 4.

The first lags in all of the best fitting autoregressions (top rows of table 2) for Ireland 
are insignificant, and the values of first order coefficients tend to decrease from 0.2184 
to 0.1122. Therefore, as the size of the sample increases, the significance declines. All 
this signals about the loss of accuracy and decreased measurement precision. The fifth 
lag does not reveal anything of particular interest, the estimate of which fluctuates with 
no clear tendency peaking at 0.3639 or falling till 0.2863. The changes in the sample size 
do not affect the significance of the fifth lag in any clear direction.

There are several reasons why the first lag is included, despite being insignificant. 
Firstly, it is hard to believe that it takes five quarters for the growth rates to adjust, 
especially since it is difficult to imagine what regularly happens with a frequency of 
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five quarters. Taken together, the first and the fifth lags in quarterly data analysis make 
sense, as there are four quarters between them and this choice perfectly coincides with 
the type of data analysed. Secondly, knowledge of the history of the model build-up is 
necessary to fully justify exactly this selection. It is quite unbelievable that the analysis 
of ACFs and PACFs has revealed no signs of self-dependency for the Irish growth rates. 
Despite the inability to find at least one significant autocorrelation, the fifth lag, as the 
highest, was preselected for the estimation of the model. Even though the first lag was 
insignificant, it was added on conceptual grounds, already knowing the dynamic pattern 
of a regime switching model. Contrary to the situation with a single fifth lag, jointly con-
sidering the first and the fifth lags is quite meaningful as they indicate the dependency 
between the current and the preceding quarter with a one year lag.

TABLE 2. Estimates and RMSEs of Irish predictions

Sample Predictions
Estimates and Std. Errors RMSE

δ α1 α5 ρ

Autoregression 
ie
t

ie
t

ie
t

ie
t yyy εααδ +++= −− 5511

1997Q1:2008Q4 2009Q1:2009Q4 0.0123
(0.0033)

–0.2184
(0.1473)

0.3479
(0.1597)

2045.52

1997Q1:2009Q1 2009Q2:2010Q1 0.0117
(0.0033)

–0.1547
(0.1446)

0.2863
(0.1596)

1286.78

1997Q1:2009Q2 2009Q3:2010Q2 0.0115
(0.0033)

–0.1482
(0.1427)

0.3004
(0.1558)

1081.55

1997Q1:2009Q3 2009Q4:2010Q3 0.0109
(0.0035)

–0.1333
(0.1413)

0.3479
(0.1470)

336.42

1997Q1:2009Q4 2010Q1:2010Q4 0.0106
(0.0036)

–0.1122
(0.1374)

0.3639
(0.1444)

344.53

1997Q1:2013Q4 2014Q1:2014Q4 0.0094
(0.0029)

–0.1606
(0.1192)

0.3621
(0.1269)

592.24

Regime switching model 
ie
tt

ie
t

ie
tt

ie
t

ie
t

ie
t IIyyy ενρεααδ )()( −+++++= −−− 115511

1997Q1:2008Q4 2009Q1:2009Q4 0.0157
(0.0028)

–0.3449
(0.0966)

0.2823
(0.1023)

0.7942
(0.3362)

246.05

1997Q1:2009Q1 2009Q2:2010Q1 0.0139
(0.0028)

–0.2257
(0.0979)

0.2830
(0.0991)

0.882
(0.3193)

576.28

1997Q1:2009Q2 2009Q3:2010Q2 0.0142
(0.0028)

–0.2353
(0.0957)

0.2829
(0.0964)

0.8255
(0.2616)

846.14

1997Q1:2009Q3 2009Q4:2010Q3 0.0136
(0.0028)

–0.2066
(0.0966)

0.3194
(0.0962)

0.8427
(0.2529)

196.68

1997Q1:2009Q4 2010Q1:2010Q4 0.0135
(0.0028)

–0.2250
(0.0947)

0.3151
(0.0946)

0.8339
(0.2243)

444.04

1997Q1:2013Q4 2014Q1:2014Q4 0.0106
(0.0021)

–0.2011
(0.0818)

0.3492
(0.0841)

0.7717
(0.22345)

482.15

Source: author’s calculations
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Alternative models for the same samples, but with a regime switch for the errors that 
occur in the last quarter of 2007, are in bottom rows of table 2. The subjective selection 
of precisely this date for the regime switch can be motivated by the fact that in Ireland, 
GDP started to decline since the mentioned date and what was supposed to be a simple 
recession later turned into an unprecedented downfall. Turning dates for Estonia, Latvia, 
and Lithuania were selected analogously. The fact that I do not provide any statistical 
test for the detection of turning points does not mean that tests like these can not be con-
structed; it may only indicate that in this particular analysis, the subjective judgements 
gave more than satisfactory results.

FIG. 4. Actual and predicted GDP for Ireland for the corresponding periods

Source: the Central Statistics Office of Ireland and author’s calculations
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The are several benefits to letting the errors change the regimes. First, the signifi-
cance of the coefficients increased and the first lag became significant. Keeping in mind 
that in initial data analysis all ACFs for yt 

ie were insignificant, omission of the regime 
switching part for the errors caused that essential autocorrelations having been overlooked. 
Second, the constancy of the estimates of the fifth lag increased (estimates range from 
0.2823 to 0.3194). Third, the estimates gained extra vitality and started to reflect the agent 
perspectives based on the then-current state of the affairs. The equation in table 2, which 
was based on the 1997Q2-2008Q4 sample, reflected the pessimistic moods (the sum of the 
autoregressive coefficients was negative) that prevailed at that time. In the remaining equa-
tions, the sums of autoregressive coefficients were already positive. These models echo 
the change in people’s expectations, which we can vividly express as being from “things 
will be worse and worse” to “with time, we will overcome that as well”. The estimate of ρ 
fluctuates from 0.8882 to 0.7942, being large in magnitude and mirroring the response that 
the negative impact of the financial crisis could diminish only with time.

It is important to note that the expansion of the sample leads to more drastic changes 
in the constant regime model than with the regime switching model, yet the coefficients 
in regime switching models are more stable as compared to those in the constant regime 
models.

It is evident that the regime switching portion added a visible amount of robust-
ness and significance to the coefficients. Despite this, in terms of predictability, regime 
switching models overcame constant regime models only in the initial stages of the cri-
sis. Predicting the growth rates for 2009Q1-2009Q4 and 2009Q2-2010Q1, linear models 
failed to guess the direction of the change, while threshold models were more or less 
correct. This can be clearly seen from the two upper panels in figure 4. For  later periods, 
threshold models were not as effective and their predictions did not differ as considerably 
as of the linear model. RMSEs only confirm the conclusions of the graphical analysis.

It is clear that better predictions ar yielded by those models who are more stable on the 
long run, yet more responsive to the fundamental changes, namely the drastic change in 
the coefficients switching from an equation based on the 1997Q1:2008Q4 sample to an 
equation based on the 1997Q1:2009Q1 sample. Regime switching models are useful if the 
economy is still in the phase of downturn or it overcame this period in a very near past. 
Otherwise, the forecasts from constant regime and regime switching models are similar.

The regime switching part was the fundamental missing link in the equation, the 
omission of which caused incorrect short run forecasts, a loss of estimation precision and 
misspecified dynamics (single fifth lag, instead of two, first and fifth). By summarising 
the Irish predictions, we can conclude that the main advantage of the regime switching 
models is the accuracy of short-term forecasts. If we compare the predictions of constant 
and regime switching models, we can clearly see that models with changing regimes 
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give more reliable estimates of what is likely to happen in the initial phases of the crisis. 
For later periods, their predictions do not differ very much.

4.2. Estonian, Latvian, and Lithuanian predictions

The strategy is similar to the one proved and tested with the Irish data. We begin with 
a 1993Q1-2008Q4 Estonian GDP sample and update it again by one observation every 
time a new data point becomes available. The estimates and RMSEs of best fitting au-
toregressions and regime switching models for the growth rates of Estonian GDP (yt 

ee) 
are in table 3.

TABLE 3. Estimates and RMSEs of Estonian predictions

Sample Predictions
Estimates and Std. Errors

RMSE
δ α1 ρ

Autoregression 
ee
t

ee
t

ee
t yy εαδ ++= −11  

1993Q2:2008Q4 2009Q1:2009Q4 0.0121
(0.0034)

0.0913
(0.1490)

2.6889

1993Q2:2009Q1 2009Q2:2010Q1 0.0105
(0.0042)

0.2625
(0.1318)

1.0086

1993Q2:2009Q2 2009Q3:2010Q2 0.0099
(0.0045)

0.3083
(0.1228)

0.3107

1993Q2:2009Q3 2009Q4:2010Q3 0.0092
(0.0046)

0.3358
(0.1197)

0.8453

1993Q2:2009Q4 2010Q1:2010Q4 0.0100
(0.0044)

0.3059
(0.1182)

0.3101

1993Q2:2013Q2 2013Q3:2014Q2 0.0101
(0.0037)

0.2714
(0.1098)

0.1236

Regime switching model 
ee
tt

ee
t

ee
tt

ee
t

ee
t IIyy ενρεαδ )1()( 111 −++++= −−  

1993Q2:2008Q4 2009Q1:2009Q4 0.0134
(0.0024)

0.0853
(0.0928)

0.7001
(0.7231)

0.4081

1993Q2:2009Q1 2009Q2:2010Q1 0.0113
(0.0025)

0.2361
(0.0978)

0.9505
(0.4820)

1.6464

1993Q2:2009Q2 2009Q3:2010Q2 0.0107
(0.0025)

0.2744
(0.0985)

0.9280
(0.4206)

0.8731

1993Q2:2009Q3 2009Q4:2010Q3 0.0103
(0.0025)

0.2985
(0.0998)

0.9413
(0.3925)

1.2888

1993Q2:2009Q4 2010Q1:2010Q4 0.0107
(0.0025)

0.2726
(0.0972)

0.8322
(0.3338)

0.2897

1993Q2:2013Q2 2013Q3:2014Q2 0.0107
(0.0022)

0.2285
(0.0915)

0.8636
(0.3297)

0.2567

Source: author’s calculations

Here, the first quarter of 2008 was chosen for the regime switch as that is the date 
when GDP in Estonia began to decline. Similarly to Ireland, what was supposed to be 
a simple recession turned into abnormal downfall. The actual and predicted GDPs for 
Estonia are depicted in the six panels of the figure 5.
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Similar to the case of Ireland, the regime switching portion added a visible amount 
of robustness and significance for the coefficients, but in terms of prediction capacity, 
regime switching models overcame constant regime models only in very initial stages 
of the crisis. For the later periods, there are no visible differences between the predic-
tions from competing models. Predicting the growth rates for 2009Q1-2009Q4, the lin-
ear models failed to guess the direction of change, while threshold models were correct. 
This can be clearly seen from the upper left panel in figure 5.

The estimates of both Estonian and Irish regime switching models are more robust 
and precise than their linear counterparts, even though the possibility for the errors to 
change regimes increased the overall reliability of the models and helped to extract the 
main dynamic features of the variables.

FIG. 5. Actual and predicted GDP for Estonia

Source: Eurostat and author’s calculations
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If one compares Estonian and Irish models, two distinctions become evident. First, 
the coefficients in models for Estonia are slightly less stable, compared with those from 
the models for Ireland. This disparity may be related to policy changes. Estonian politi-
cians responded to the crisis immediately and introduced austerity measures (Dudzińska, 
2013), while the Irish politicians paused and lingered (Whelan, 2013). Different chal-
lenges in the economic and political environment forced politicians in these countries 
to act differently. The different timing choices for political actions caused differences in 
stability of Estonian and Irish autoregressive coefficients. As was stressed in the first sec-
tion, the possibility that short run innovations have caused the change in the behaviour of 
GDP is not very compelling. Changes in short run innovations can cause changes in au-
toregressive or moving average coefficients, depending on the univariate model that fits 
the data. However, there is a second distinction – innovations in Estonia were autocorre-
lated for two periods, while Irish innovations were autocorrelated for a longer time span. 
These differences can be explained by the fact that Estonia was hit by the crisis harder 
than Ireland, but the transition into a milder phase of recession began sooner in Estonia.

Irish and Estonian examples are very illustrative in that they both demonstrate suf-
ficient predictability with the early warning signs, whereas the Latvian and Lithuanian 
cases demonstrate limited predictability. Ireland and Lithuania are two antipode econo-
mies: the downturn in Ireland begun with clear signs of recession, and the recession 
turned into depression, whereas in Lithuania, when the crisis started, the economy was 
still in peak condition.

Models for Latvia and Lithuania were not very promising as the initial estimation 
revealed the explosive features of the errors that are not consistent with any economic 
logic, or perhaps only reflect the crash expectations that prevailed in both of these coun-
tries. The negative expectations, pertaining to the belief that everything will only be 
worse, were common at that time. The unsatisfactory estimates for Latvia (see equation 
14 ) and Lithuania (equation 15), using the data from 1995Q2-2008Q4, are given below. 
The bias correction is omitted as there is no need to correct the inadequate coefficients.
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We know that the downturn in Latvia and Lithuania was harder, particularly with the 
first two quarters being harsh. At that time, the crisis showed no clear signs of retreat. Af-
ter the lowest possible boundary was reached, a long lasting recovery process began and 
the severe recession turned milder. In this case, the estimates of ρ for Latvia and Lithu-
ania should be larger in magnitude and may exceed unity, but should diminish with time. 
These possibilities require a different treatment and are left for the forthcoming papers.
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The findings and the results of this analysis do not contradict the research done by 
other authors and should be treated as complements to the studies already done. In 
the aftermath of the crisis, many authors have presented their forecasting innovations. 
Marcin Kolasa and Michał Rubaszek found that financial frictions increased the quality 
of forecasts for the crisis period, but reduced the quality of forecasts during non-crisis 
times (Kolasa et al, 2015). Although the threshold model from this paper cannot be 
directly compared with the model employed by Kolasa and Rubaszek on conceptual 
grounds, their findings match the general conclusion from this paper – if the predictions 
fall into the regime switch or if the switch occurred in the near past, threshold models 
outperform their linear competitors, but if the regime switch occurred long ago, predic-
tions from both the linear and threshold models are equally accurate. In a recent paper, 
Huber presented enough evidence that non-linear and combinations of linear and non-
linear models yielded more accurate results (Huber, 2016). Fady Barsoum and Sandra 
Stankiewicz predicted the GDP growth, but the main innovation in their research was 
the Markov-switching model for the mixed frequency data. Even though the financial 
crisis was of secondary importance in the model, their analysis led to the conclusion 
that it is possible to find a setting that would be helpful in the periods of crises, but not 
particularly useful in forecasting GDP growth during periods of stable growth (Bar-
soum et al., 2015).

Keeping in mind the substantial and positive improvements in forecasts and compar-
ing the analysis and the results of this article with the studies done by other authors, re-
specification of the error term fulfilled its purpose.

5. Concluding remarks

The analysis presented here has revealed that if the predictions fall into the regime switch 
or if the regime switch occurred in the near past, threshold models outperform their lin-
ear counterparts, but if the regime switch occurred long ago, predictions from both the 
linear and threshold models are equally accurate. Regime switching models are useful 
if: a) The economy is still in the phase of a downturn; b) The downturn is in its initial 
phases; c) Constant regime models failed to predict it.

Contrary to the viewpoint that the recent financial crisis can not be considered as a 
change in macro process, the predictions made with threshold models that assume this 
change are far superior to those who do not. Consequently, the effects of the financial 
crisis or recession can be modelled by relaxing the classical assumptions and letting the 
errors change the regimes. Even if this conclusion is false, letting the errors switch pat-
terns proved to be a fruitful choice in terms of forecast quality. The clear-cut shortcom-
ing of retaining the assumption of the stable data generating pattern is the diminished 
predictive power.
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This paper is introductory in the sense that it presents a concept. Further studies are 
necessary to obtain a broader picture of the possibilities that are offered by the regime 
switching errors. High frequency financial data may be a proper choice, as that data can 
contain frequent and relatively long lasting switches.

All calculations were done with statistical software R.
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